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DEPARTMENT OF THE ARMY

HEADQUARTERS US ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS. VIRGINIA 23604

This contract was initiated to investigate the feasibility of applying
higher-harmonic blade pitch control solely at the blade root for the
purpose of eliminating the transmission of helicopter rotor oscillatory
shear forces to the fuselage. Numerical analyses were performed to
estimate the pitch control inputs and the associated performance required
for eliminating transmitted (noncancelling) harmonic vertical root shears
alone, harmonic inplane root shears alone, and the principal vertical and
inplane harmonic root shears simultaneously.

For the UH-1A rotor system with an assumed ideal control system, results
indicate that, except for the first-harmonic inplane shear, harmonic root
pitch control can be applied to eliminate transmitted harmonic root shears.
Elimination of the higher-harmonic shears does not appear to be feasible:
they are relatively small in magnitude and do not warrant the additional
wechanical complexity. Although the use of a single root pitch mode would
be preferable from a simplicity standpoint, evidence suggests that dual
pitch controls with differential pitching motions of inboard and outboard
blade sections are essential. Higher harmonic pitch control is a promising
means of vibration suppression. However, application of harmonic pitch
control solely at the blade root appears to be stymied by the following
deficiencies:

® For the two-bladed teetering rotor system considered, the first-
harmonic inplane shear is the largest transmitted harmonic root
shear. It cannot be eliminated by root pitch control.

@® Root pitch control requirements change appreciably with flight
conditions.

® In eliminating certain harmonic root shears, harmonic root pitch
control inputs incite aerodynamic-inertial interactions, causing
large blade motions and large pitch angle excursions.

For these deficiencies, a form of dual pitch control with differential
pitching motions of inboard and outboard blade sections is foreseen as a
promising solution.

A feasibility study of a rotor system with dual pitch controls is currently
under way. This initial feasibility study does not embody consideration of
higher-harmonic pitch control.
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SUMMARY

A study was made of the possibility of using higher harmonic
pitch-angle inputs to eliminate the transmission of oscillatory vertical
and inplane forces from a helicopter rotor to its driving shaft, The
aerodynamic loads were computed by using a realistic model which
represented the rotor blades by bound vorticity distributions and the
wake by a mesh of segmented vortex filaments.

The method which was developed computed the required pitch-
angle inputs at the blade root which would eliminate the oscillatory
vertical and inplane root shears. The oscillatory lift and drag were
not constrained to be zero at all radial stations, and the inertia forces
associated with blade dynamic responses which also produced root
shears were taken into account in the computations. The computa-
tional procedure which was developed is capable of treating either
the two-bladed teetering rotor or articulated rotors,

The computed results were based on a two-bladed teetering
rotor which was approximately the same as that of the UH-1A config-
uration except for the assumed differences in pitch control. The
required pitch angle inputs were determined for eliminating various
combinations of harmonic root shears.

Variations in the required pitch inputs were found for the
various flight conditions analyzed, For all flight conditions, however,
the results showed that most of the oscillatory vertical root shear could
be eliminated with blade root pitch inputs at the second and fourth har-
monics. Root pitch control could be applied to eliminate all the har-
monic transmitted shears except the first inplane harmonic, The first
harmonic root pitch control was unavailable because it was necessary
for providing ordinary cyclic pitch control of the tip-path plane. Of
the transmitted inplane shears that could be eliminated, the largest
could be eliminated with blade root pitch inputs at the third and seventh
harmonics. For all cases investigated, the blade dynamics responses
had an important effect on the required pitch inputs,

The simultaneous application of higher even harmonic and
higher odd harmonic pitch control affected the performance charac-
teristics of the rotor from those of conventional control to a larger
extent than the individual application of either higher even harmonic
or higher odd harmonic pitch control,
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INTRODUCTION

The reduction of high vibration levels of helicopters has been
the object of rather intensive effort for many years, The primary
source of the objectionable vibrations appears to stem from the forces
generated by the rotor which are transmitted directly to the drive shaft
through the blade root fittings and rotor hub. Many different methods
have been advocated for reducing the vibratory shears which are trans-
mitted in this manner., Among these methods have been attempts to
shift the natural bending frequencies of the rotor blades so as to reduce
the amplification of the dynamic response in the bending modes, and
attempts to reduce the vibratory exciting forces (as well as to improve
performance) by the application of second harmonic pitch control.

Neither of the methods of attack mentioned above, or others,
appeared to be entirely satisfactory, Thus, a study was initiated at
CAL to investigate the possibility of reducing transmitted rotor shaking
forces by the application of a more general type of blade pitch-angle
control (Reference 1). This study differed from preceding ones in
that a more realistic model was used in computing the rotor aero-
dynamic exciting forces, In the first part of this study, the required
pitch angles were found which would eliminate the oscillatory lift
loadings at all radial stations, In the computations for this case,
an ideal control system was assumed such that continuous radial
and azimuthal variations in blade pitch angle would be possible, The
required pitch angles were computed to obtain a prescribed constant
blade-lift distribution which did not vary with azimuth position. This
inverse problem was solved by an extension of a program developed
for predicting the aerodynamic loads and dynamic response of rotor
blades (Reference 2), From the results, it was concluded that the
design of a pitch control system for the elimination of all harmonic
vertical blade loadings would be difficult because the radial variations
in the required pitch angles varied considerably with azimuth position,
and the amplitudes and phase angles of the required inputs changed with
flight condition,

In the second part of the study, a method was developed for
computing the pitch-angle inputs at the blade root which were required
to eliminate the oscillatory transmitted vertical root shears without
requiring a radial variation in pitch inputs, A series of computations
was carried out for a two-bladed rotor approximately the same as
that of the UH-1A configuration except for the assumed differences
in pitch control, It was found that all noncanceling vertical root
shears from the second through the twelfth harmonic could be elim-
inated with higher harmonic pitch-angle inputs introduced at the
blade root. Further, the largest part of the oscillatory transmitted
vertical root shears could be removed by using only second and
fourth harmonic pitch-angle inputs,

e i o s e
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These results gave definite encouragement to the possibility
of obtaining significant reductions in the transmitted harmonic root
shears by using blade root pitch inputs which could be introduced by
a practical control system,

This initial effort, as reported in Reference 1, was limited
to the consideration of the lift or vertical shear loads transmitted to
the fuselage, It is well known that vibratory drag loads generated in
the rotor system are also responsible for serious fuselage vibrations,
and it was recognized that further effort would be required to deter-
mine the effect of blade pitch control on the drag or inplane shear,
loads as well,

On the basis of the encouraging results obtained in Reference 1,
it was deemed logical to continue the effort for evaluating the possible
application of blade pitch inputs for the elimination of transmitted har-
monic rotor loads,with emphasis on (1) the investigation of instabilities
in the iterative solution which had been encountered in the first study,
(2) study of transmitted inplane forces, and (3) estimating the effect
of higher pitch-control inputs on performance,

In the present report, the analytical method for determining
the pitch-angle inputs that are necessary for eliminating osciilatory
vertical and inplane root shears is described, Part of this descrip-
tion is a treatment of the iterative scheme of solution of the basic
equations of motion,including the use of iteration factors and improved
initial conditions to overcome the computational instabilities, Results
are presented for the extensive numerical computations carried out
to eliminate the noncanceling vertical and inplane oscillatory shears
in various harmonic combinations for three flight conditions of the -
UH-1A rotor configuration, Included in these results i3 the effect
of the resulting blade pitch-angle inputs on performance. The basic
aerodynamic analysis, which differs only slightly from References 1
and 2, is presented for completeness in Appendix I,
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METHOD FOR FINDING PITCH-ANGLE INPUTS
TO ELIMINATE OSCILLATORY ROOT SHEARS

In Reference 1, a computational procedure was developed for
finding the required harmonic root pitch-control inputs to eliminate the
transmitted harmonic vertical root shears. The computational procedure
has been extended such that the conticl inputs required to eliminate the
transmitted harmonic inplane root shears can also be determined. In
both cases, the blade dynamic responses which are excited by the residual
harmonic airloads and affect the root shears are included in the analysis,

Computations were made to determine the harmonic control
inputs required to eliminate oscillatory root shears for a two-bladed
teetering rotor configuration approximately the same as that of the
UH-1A helicopter, under the following assumptions:

1. The flight condition. is steady so that the blade dynamic
responses can be assumed te-be periodic.

2, The blade root shears due to combined aero-
dynamic and inertia force loadings are to be
zero at the prescribed harmonics.

3. The tip-path plane is in a prescribed position,

4., The blade dynamic responses can be described by:
a, Three symmetric flapwise bending modes,

b. Teetering motion and two antisymmetric
flapwise bending modes.

¢. Two symmetric torsion modes.

d. Two antisymmetric torsion modes (with
the same frequencies as the symmetric
modes),

e. Two symmetric chordwise bending modes.

f. Two antisymmetric chordwise bending
modes (with the same frequencies as the
symmetric modes).

5. Control can be applied by:
a. One symmetric and one antisymmetric pitch

control mode, each giving uniform feathering
along the blade span,




b. One symmetric and one antisymmetric pitch-
control mode, each giving differential feathering
of the inboard and outboard sections of the blade,

When the second and all higher even harmonic root shears are prescribed
to be zero, the vertical root shear transmitted to the fuselage is a constant,
independent of azimuth position, The harmonic inplane shears are trans-
mitted to the fuselage at harmonics one above and one below the harmonic
inplane root shear so that, when the third and all higher odd harmonic

voot shears are prescrited to be zero, the inplane shear transmitted to

the fuslage consists c1 A constant and a second harmonic force,

The treatment of the aerodynamics of the rotor-wake system
was basically the same as that used in Reference 1. Minor modifications
of the aerodynamic analysis were made in conjunction with the inclusion
of the inplane aerodynamic forces, and the entire analysis is reviewed
in Appendix 1,

ROTOR DYNAMIC RESPONSES

The dynamic response of the rotor was described by the modes
indicated schematically in Figure l,which are applicable to the case
of a two-bladed teetering configuration. All of the modes can be handled
simultaneously in the computer program which was developed in Refer-
ence 1 and extended to include the inplane degrees of freedom herein,
The computational procedure is also capable of treating the case of articu-
lated rotors,but no computations were performed for this configuration,

The vertical and inplane symmetric and antisymmetric modes
werc designated by even and odd subscripts, respectively, The vertical
tip deflections due to bending in the first, second, and third symmetric
flapwise bending modes were denoted by h,, A, and h,; the inplane tip
deflections due to bending in the first and second symmetric bending
modes were denoted by #2and #. The tip deflections represent the
generalized coordinates in the various modes. The tip deflections 4, , 4,
and A, were used as generalized coordinates for the teetering motion and
the first and second antisymmetric flapwise bending modes, respec-
tively, while the tip deflections #, and #; were used as generalized
coordinates for the first and second antisymmetric chordwise bending
modes, respectively, Since the deflections in the blade chordwise
herding modes are assumed to be zero at the blade root, the deflection
shapes for each blade are the same for the symmetric and antisymmetric
chordwise bending modes.

A symmetric vertical rotor displacement mode 4, and an
antisymmetric inplane rotor displacement mode #,, are included in
the analysis, The former mode corresponds to vertical motion of the
tlanping hinge, and the latter mode corresponds to inplane motion of

r.c lag hinge. Both are produced by fuselage and hub motion. The 4,
and H,, modes are introduced because the sum of the generalized

——



aerodynamic and inertia forces acting in these degrees of freedom 1s
equal in magnitude to the transmitted shear. The amplitudes of the
hys and H,, moticns are assumed to be zero in the analysis; i, e,, it
is assumed that the 4,, and A4,, motions do not produce any blade
plunging or inplane motions, respectively,

An antisymmetric blade vertic2l displacement mode 4,, is
also shown in Figure . This mode has no physical significance in
the case of a teetering rotor, and motions in this mode are set equal
to zero in the calculations, In the case of an articulated rotor blade
with an offset flapping hinge, this mode would correspond to a tilting
of the shaft, The generalized forces acting in the antisymmetric 4,,
mode produce canceling vertical root shears, biit such shears can
transmit moments to the shaft only when offset hinges are used,

The analysis provides for the computation of these moments, Simi-
larly, displacements in the symmetric blade inplane displacement
mode #,; are assumed to be zero,and the generalized forces in this
mode produce canceling inplane root shears,

The generalized coordinates 6,, 6, , 6, , and 6, used for the
blade torsion modes are the angular deflections about the elastic axis
at the blade tip. Since the pitching of the blade root is described by
the control modes, the angular deflections in the blade torsion modes
are assumed to be zero at the blade root. As a result, the deflection
shapes for each blade are the same for the symmetric and antisym-
metric torsion modes, The natural frequencies of the bending and
torsion modes shown in Figure | are listed in Appendix II for the
configuration studied,

The computational model permits the use of two symmetric
and two antisymmetric pitch-control modes. Conventional collective
pitch is the steady component of the motion in the first symmetric
control mode ¢;, while conventional cyclic pitch is the first harmonic
motion in the first antisymmetric control mode ¢,. Higher harmonic
motions can be introduced in both the ¢, and ¢, modes in order to
modify the root shears. The second symmetric and second antisym-
metric control modes ¢, and {;, shown schematically in Figure 1,
are possible differential control motions in which the inner and outer
sections of the blade pitch in opposite directions., The mode shapes
shown for ¢, and {, could be replaced by other radial variations within
the framework of the analysis., For example, a linear variation in
pitch might be used which could be produced by a device introducing
a moment at the blade tip,

The spanwise variations of the amplitude in each mode arc
represented by dimensionless functions as

.(r)g;(¢) = amplitude of motion in 2% mode
at radial station » and at time ¢.
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HARMONIC AND DISCRETE TIME TREATMENT OF VARIABLES

The investigation has been limited to considering steady flight
conditions for which the rotor loads, rotor motions,and transmitted
shears are assumed to be periodic. In carrying out the aerodynamic
computations, including the effects of the wake vorticity distributions,
it is convenient to utilize the values of the variables at discrete time
increments similar to the trecatment used in Reference 2. As discussed
in Appendix I, the positions of the shed and trailing vortices in the wake
are determined from uniform inflow theory for the given flight condition,
When the values of V, ,a, , &, and 4 in Equation (42) of Appendix I are
given at the vR4 blade ségment positions in the rotor disc, the aero-
dynamic problem is completely defined. The solution of the aerodynamic
problem gives the blade circulation, lift, and pit¢hing- moment at each of
the blade segment positions. Since the profile and induced drag loads
are also determined at each of the blade segment positions, the variations
in the aerodynamic loads are, in effect, given at discrete azimuth or
time incremeats. The transmitted shears and generalized forces acting
in each of the flapwise bending, chordwise bending, and torsion modes
at the discrete azimuth positions can be computed from the lift, drag, and
moment distributions. In computing the dynamic responees to periodic
forces, it is more desirable to use a harmonic description of the vari-
ables. The time variation of the ¢,/ generalized coordinate can be
approximated by a finite Fourier series as follows:

NA/R
g;(¢) = Z‘_({(A,, g;)cosny +(8,¢:) .!'inn¢} ’ (1)
naO

where
/ NA
(Ao8i) = 34 2, % >

2 &
Ag)e —— "
( n%) NA ; (9.)‘ cos ﬂ¢4

o M ’ /:nf_(%-/) (2)
(a"f") = ;‘-g (?‘-)l.flb ﬂ¢‘

1 ¢* ) . NA
(‘"’J)',W‘Z.; (9,14 cos (£4-1)m n= 5.

The symbol (4,4, ) indicates the operation of multiplying (¢;),, the value
of the generalized coordinates,at azimuth position y4=2r(¢-/)/#4 Dby
(2/m4) cos ngy and summing for #4 equally spaced azimuti positions.
This is simply the coefficient of the n*” harmonic cosine term. Simi-
larly, (8,9;) is the coefficient of the »* harmonic sine term,
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DISCUSSION OF EQUATIONS OF MOTION AND ANALYTICAL PROBLEM

The equation of motion for each of the flapwise or chordwise
linear deflection and torsion modes can be written in the general form

oo . 2 - . -_— -
; {M’GZ 7, -Z'QG"-Z-?J' + (K 9 -0 ’;.-}j) % +J(9K)’i’j (91'—9.&")}

. §N+6’.:h043€ ~J"-:”0d 5” -8""”0’ D" } &b

(3

* g?; +Z"_' {63.‘ 1h,

for the assumed complex pericaic variations in the generalized coor-
dinates and in all the generalized forces acting on the blade. In this
expression, the A;.'Z'," are generalized mass coefficients, the 5,.., s
are gyroscopic coupling coefficients, the K,‘. 7;'s are generalized stiff-
ness coefficients, the ;‘.Z.’S are centrifugal force coefficients, and
the #5,4.'s are structural damping coefficients, Definitions of these
coefficients are given in Appendix II. The quantities on the right-hand
side are the complex generalized aerodynamic forces acting in the

%, mode&4,. ; the generalized centrifugal forces arising from built-in
twist and preconing i ; the complex noncanceling vertical root shear
5v; the complex canceling vertical root shear 5, ; the complex noncan-
celing inplane root shear-d, ; and the complex canceling inplane root
shear-7 . The shears 3,, 3, ,-Dy,-0; act only in the 455, Aoy , Hoa, and
Hos modes, respectively, as indicated by the & functions, All coeffi-
cients and generalized forces represent values per blade,

vy
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Complex vectors, indicated by bars, have been used in Equa-
tion (3),since they are convenient in writing the conventional expression

-

i for structural damping. The complex periodic variations of each-gener-
{ alized coordinate (g;) are expressed in the form
' Nas2 e
- 2 (sl
ne=g
MA/2 ' ) Z
= Zo {(A,,g;) cosng + (B,9;) sin nﬁj
Na
va/e .
+J‘Z {—(Bng;)ca.snﬁ+(ﬁ,,g;)1m nf}, (4)
nsO

where the complex coefficients have been defined in such a manner
that the real part of Equation (4) is identical to Equation (1). Similar
expressions hold for the other complex periodic quantities (&, , Z,. ,
5wy 8¢ v0u 'ﬁc)- e ‘

Only the real part of Equation (3) is considered in the subse-
quent discussion because it suffices to describe the real physical motion.
After substituting expressions of the type shown in Equation (4), the
real part of Equation (3) can be arranged in the form of a sum of

i
i




harmonic terms, and the coefficient of each cosine and sine harmonic
must vanish for the complete equaticn to be satisfied. The require-
ments on the coefficients of cosnp and sih ¢ in the equation for the

g, ¥ mode are

Z: {KZ g -ﬂ277"‘7j 'nz_()_’M"_gj}(ﬁnﬂ_,') +§: {kg)i"j - n_QZZG?‘. % } (Bn% )

4

+ 6?‘ -ho.s (An 5N) i 5".,1)0‘ (An 56 ) & 6"‘., /164 (‘An DA/) 7 JZ" Hos (.An 06)

=(,4n6$¢‘.)+(/3,,27‘), (5)

¢ 2
—Z{(Kg)%f, "G, }(A"gj) +JZ {43, -ﬂzgﬂj -”HZM%%E(B”%)

J

8y hps (BaSw) * g (BuSe) + 8y 4,y (B, 00) + 8y 0, €8, 0:)

= (8,4, ). (6)

{

A

In matrix form, these equations and certain auxiliary constraint
equations are shown in the form in which they appear in the computer
program on pages 9 and 10,

=

From the symmetry of the two-bladed teetering rotor, it follows
that the generalized forces acting in the flapwise and torsional symmetric
modes can only be of even or zero harmonic order, while those acting in
the flapwise and torsional antisymmetric modes can only be of odd har-

i monic order. As a result, the response in the flapwise and torsional
symmetric modes must be at zero or even harmonic orders,and the
response in the flapwise and torsional antisymmetric modes must be at
odd harmonic orders, The same condition holds for the inplane modes;
i. e., tne generalized forces acting in the chordwise symmetric modes
can only be of even or zero harmonic order,while those acting in the
chordwise antisymmetric modes can only be of odd harmonic order,

The response in each of the various modes is indicated by the variables
appearing on the left-hand side of Equations (7) and (8). The fact that
the responses in the various modes occur as described above does not
mean that the two sets of equations are decoupled,since coupling can
occur among harmonic coefficients of all orders through the generalized
aerodynamic forces. For example, the combination of even harmonic
blade motion and the flow dissymmetry due to forward flight can produce
odd harmonic generalized aerodynamic forces,

i it o sl
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} The first four rows in Equation (7) represent the equilibrium
of the »*” harmonic cosine components of the generalized forces in the
symmetric vertical deflection modes (4, , h; . hey hg ). The fifth and
sixth rows represent the equilibrium of the cosine components of the
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generalized moments in the symmetric torsion modes (§,-, 8y ). Simi-
larly, the ninth to the fourteenth rows represent the equilibrium of the
sine components of the generalized forces in the symmetric vertical
modes and the generalized moments in the symmetric torsional modes.
The seventeenth, eighteenth, and nineteenth rows represent the equilib-
rium of the »%» harmonic cosine components of the generalized forces
in the symmetric inplane modes, while the twentieth, twenty-first

and twenty-second rows represent the equilibrium of the sine compo-
nents of the generalized forces in the symmetric inplane modes, The
choice of this representation was a logical extension of the represen-
tation presented in Reference 1,

Twenty-two variables have been listed in the column matrix
on the left-hand side of Equation (7). The deflections in the 4,, and
#,s modes are assumed to be zero, but the noncanceling vertical har-
monic shear coefficients (4,5,), (4,5, ) and the canceling inplane
harmonic shear coefficients(-4, 0:)» £8, 0,) which are associated
with these modes are treated as variables in the problem, The
remaining variables are the cosine and sine components of the deflec-
tions in the symmetric flapwise bending modes, symmetric torsion
modes, symmetric control modes and symmetric chordwise bending
modes. No equations of motion are included for the equilibrium of the
control modes since the characteristics of the control system have not
been included in the study, The seventh, eighth, fifteenth, and sixteenth
rows of Equation (7) are four constraint equations which are added to
the dynamic equations in order to make the number of equations equal
to the number of nknowns in the column matrix on the left-hand side.
Since constraiui equations are included in the equation set for each
harmonic, 2 well-defined problem results for the complete system
of equations having the same number of equations as unknowns,

Thre implementation of a pitch control system for the elim-
ination of root shears might be based on several different concepts.
One such system might apply a higher harmonic pitch control schedule
which would be selected in accordance with the flight condition (i. e.,
flight velocity, votor speed, etc.). Solutions based on the method given
in this section ‘ndicate the pitch control schedules which should be used.
In another possible system, the output of a sensor measuring the blade
root shears right be used as a feedback in a pitch-control servo. The
application of such a servo system would be dependent upon obtaining a
design in which the dynamic responses of the coupled rotor - servo
system would be stable. A more extensive computer program would
be required to study this problem,which would include the dynamics
of both the rotor and servo systems,

A general element of the 22.by-22 dynamic response matrix
on the left-hand side of Equation (7) is denoted by J(z, J, n) where
Z and J denote the row and column, respectively, and n the applicable
harmonic order. The [0] matrix has been partitioned, and the forms of
typical elements in the submatrices are shown. The specific form of
the 22-by-22 matrix was obtained by bordering on the 16-by-16 matrix

11
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of Reference 1. The elements of the submatrices [D] referring to the
inplane degrees of freedom can be expressed in the same general form
as those for the flapwise and torsional degrees of freedom, and they
would become part of either principal submatrix by suitable rearrange-
ment of the equations.

The n* harmonic generalized aerodynamic forces acting in
the symmetric modes are listed in the first column matrix on the
right-hand side of Equation (7). In the next column matrix, a list
1s given of the generalized centrifugal forces (24.(n)) associated with
preconing and built-in twist. These are steady forces,and Zg.(n) is
zero unless » = 0. The last column matrix in the right-hand side of
Equation (7) is used in the computer program to prescribe the values
of four variables (for » =0, only two of the cosine coefficients need
be prescribed since all the sine coefficients are zero).

Two examples are given below in order to clarify the meaning
of the notation used in the constraint equations. If it were desired to
use the seventh equation to put a constraint on (4,5,) (i.e., the n?h
harmonic cosine coefficient of noncanceling root shear), a setting

JP(n,I=7)=17 (9)

would be used in the inputs tothe computer program. This means the
only element of the [£] matrix in the seventh row (7 -7 )would be in
the first column (J=/ )resulting in the equation

/i
n

= (4,5.) = {—1’—, Ye(n.7). (10)

Thus, for 7P(n,7)=7 , the input YP(sn 7) would be set equal to zero if
a solution were desired with the »* harmonic noncanceling vertical
root shear equal to zero.

If it were desired to use the seventh equation to put a constraint
on *A,D,] (i.e., the n™ harmonic cosine coefficient of noncanceling
inplane shear), a setting

JP(n,1-7) =17 (11)

would be used in the inputs to the computer program. This means that
the only element of the [£] matrix in the seventh row (7-7) would be in
the seventeenth column (s:7/7), resulting in the equation

1 /
5 CAa00) = =% YP(n.7), (12)

and for JP(n,7)=17, the input YP(n 7) would be set equal to zero if a
solution were desired with the »% harmonic noncanceling inplane shear
equal to zero,

12
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Except for the latter example, the preceding discussion has
been given relative to the even harmonic equations, but analogous con-
siderations hold for the odd harmonic equations. Although the expres-
sions for the matrix elements a;ppear to be the same in Equations (7)
and (8), different “g 5, , M4, %9 o (K9lg.q;, and G ;4 coefficients
are involved because syrnmetnc and antisymmetric ‘modes occur in
the two cases, respectively., For» =0, there are no sine component
generalized forces or generalized coordinates, and somewhat different
treatment is required. It was desired to use matrices of the same
order for all harmonics in the computer program for convenience,

The n:0 case was brought into this framework by retaining only
diagonal terms in the ninth to sixteenth and twentieth to twenty-second
rows of the matrix and setting the right-hand side of the corresponding
equations equal to zero. Thus, the same matrix inversion program
could be used for n=0 as for the other harmonics.

The set of equations of motion and constraint equations for
even or odd harmonics can be written symbolically in the form

[0(1 I, n)][x(n f)] 5 [G(n r)] 3 | 2(n, I)] L [YP(n,I)], (13)

where appropriate symbols have been introduced for the column matrices
in Equations (7) and (8). The [X(n I)] matrix is composed of variables
corresponding to symmetric modes for zero and even harmonics and is
composed of vanables corresponding to antisymmetric modes for odd
harmonics. The »* harmonic generalized aerodynamic forces are
functions of the lift, moment,and drag on the blade which depend on

all the harmonics of the motion as mentioned previously. That is,

[€n.D)] = [#{(40he)s - - (Aotie); (Arhy), - - - (s Hy);

(B,h,), -+ (ByHe)i- 5 (Agghe). ---(A,,//,)H. (14)

An explicit expression for the generalized forces in the form of
Equation (14) is not available, but such a relationship can be obtained from
the solution of the aerodynamic problem as discussed in Appendix I. For
given harmonic coefficients, the azimuthal variations of the generalized
coordmates can be computed using Equation (1), The input variables @,

, and 4 in Equation (34), Appendix I, can then be expressed in terms
o{ the generalized coordinates for blade motion by referring to Figures 2
and 3, again making small-angle approximations. The geometric angle
of attack at each blade segment azimuthal position k relative to the local
velocity is

£ cr+§f,’97}(, _ (15)




where 4, is the built-in twist and the control modes are as shown in
Figure 1. The relative angular velocity due to the motion of the
blade is

: 0 . Lty
o (Shi Sinbra(aegn i)l
The last term is due to the small component of the shaft angular velocity

along the blade axis and was neglected in the computations, The com-
ponent of velocity normal to ¥, and the blade axis is

3 . "Lf/,&
by = {V,smcz, # (Ve cos s ) (cos ¢) (ﬂc,«.szhs.zfr_)

Ty he oS fa b - T hle |0 17)

where ¢ is the distance between the midchord and the elastic axis and

¢, is the distance between the midchord and the pitch axis (Appendix II).
The summations in Equations (15), (16)and (17) are over all the sym-
metric and antisymmetric modes of bending, torsion, and control motion.

Ornce the %, ° “9::". and hx" have been determined, Equa-
tion (41), Appendix I, can be solved for the bound vortices and the
corresponding Glauert coefficients at all blade segment positions in
the rotor disc. The lift (/), pitching moment (m)and drag loadings ()
can be computed by Equations (48), (49) and (52), respectively, of
Appendix I. The generalized forces in each of the vertical, torsion
and chordwise displacement modes can be determined from the relations

(68,), = [tatrifa riar, (18)

(6s,), - /[m‘(r)—e(")l‘(r)] Fo (Ndr, (19)
and

(&,,‘.)‘ = -/44(»-) Fu (rldr, (20)

where the subscript £ refers to the indicated quantities at azimuth
angle ¥4. The harmonic analysis of the results obtained from Equa-
tions (18), (19),and (20) is the final step in relating the harmonic
coefficients of the generalized aerodynamic forces and the harmonic
coefficients of the generalized coordinates of the blade motions as

indicated in Equation (14).

A schematic diagram of the analytical problem which must
be solved to evaluate the pitch-angle inputs necessary to eliminate
oscillatory root shears is shown in Figure 4, The diagram indicates
the relationships among the various parts of the problem in the approach

14
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which has been discussed. The overall diagram has been divided into
two boxes indicated by the dashed lines -- one showing the solution of
the aerodynamics of the rotor-wake systems, and the other showing
the solution for the blade dynamic response, required pitch angles and
residual root shears., Again, it is pointed out that the aerodynamic
part of the problem is treated by ".«ing the values of the variables at
discrete time or azimuth-angle j'ic  e'nents, while the solutions for the
dynamic responses and shears a2 « created in terms of their harmonic
coefficients.

ITERATIVE SCHEME OF SOLUTION FOR HARMONIC MOTIONS AND
ROOT SHEARS

It is evident from the schematic diagram shown in Figure 4
that the dependencies of the aerodynamic loadings on the dynamic blade
responses are very involved, The loads for specified input motions are
obtained only after an iterative solution for the bound vortices as dis-
cussed in Appendix I. Consequently, a direct solution for the harmonic
blade motions and root shears due to the aerodynamic loadings cannot be
carried out, and an iterative scheme of solution was adopted for their
determination as well,

In discussing this iterative scheme of solution, superscripts
are used to denote the values of the variables in a particular iteration.
Equation (13) can then be written as

[D(I,J, n)][X ), J)] -;1'1 [6“’”(n.1)] +5';A”’ [G(n, 1)] +H’; [z(n, I)] +é. ErP(nJ].(Zl)

where [Xm(n,.r)] is the fﬂ' approximation for the column matrix of the
generalized coordinates, [6""’(n,1)] is the column matrix of generalized
aerodynamic forces based on the preceding approximation for the column
matrix of generalized coordinates, and 4”[6(n.I)] is the increment in
the column matrix of generalized forces from the (#-7)*"to the ¢
approximation, That is,

e [o(n.z)] s [a "’(n,I)J = [o“"’(n,z)]. (22)

No superscripts are shown for the[D], [2], and [YP] matrices because
they remain constant in the iterative solution,

As a reminder that the [¢(n,7)] are complicated functions of
the lift, drag,and pitching moments on the blades, which, in turn,

depend upon all harmonics of the generalized coordinates, the (¢#-7)%
approximation can be written in the sense of Equation (14) as

[G (t-”(n,l)_] - [; (x("’)(o' /)' . X(t-”(/z, 22)}] . (23)
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The most direct iterative procedure would be to assume A’”[G] to
be zero in computing the ¢4 approximation for the column matrix of gener-
alized coordinates, ﬁ("’] , and to use these coordinates to comPute the
t? approximation for the generalized aerodynamic forces, [¢* | i these,
in turn, would be used to compute [X“‘"] neglecting 4’**"[ s ], etc.
Unfortunately, as Equation (21) stands, the [D] matrix becomes singular
when constraints are placed upon the various harmonics in order to
control or suppress the transmitted vertical or inplane shears. This
occurs because the coupling among many of the modes is aerodynamic
in nature, but not inertial or elastic, so that this coupling appears on
the right-hand side of the equations but not on the left-hand side in (4],

Coupling among the modes can be achieved on the left-hand side
of the equations together with an expected improvement in the rate of
convergence by estimating the increments in the generalized aerodynamic
forces from iteration to iteration. A relatively simple estimate of 2“'6]
can be made based on the assumption that the changes in the aerodynamic
lifts, drags,and pitching moments from one iteration to the next are linear
functions of the corresponding changes in the harmonic coefficients of
the blade motions. Accordingly, A [¢] is approximated by an expression
ol the following form:

r—’l'z 4 [G(n.I)] -- [5(1,1 n)]{h'“’(n,n] - [x “a, f)]} (24

where[£ ]is a square matrix depending upon harmonic number n. This
approximation to A“)[G] neglects the interharmonic coupling that is
present [see Equation (23)] but should provide an estimate of the prin-
cipal coupling in the »” harmonic. Expressions for the elements of
[£], which are based upon quasi-steady aerodynamics, are presented
in Appendix IlI,

After substituting Equation (24) into Equation (21), the following
equation results:

£ (r.7.m)][x“n. .T)] =[v*n.n]. (25)

where

[F/I.J'.n)]=[0([, f,n]+[£(.r,f,n)], (26)

“*tn 1) e za)[x 0 1) [z(n.n] -5 [YP(n,I)]. (27)

L (2) _’_[
Y (H,I)]'aza n

Equation (25) is solved at each harmonic » by finding [f",], the
matrix inverse of[/-']. The inverse exists now because the [£] matrix
has been so constructed that, when added to[2], the total[F]is regular,
Therefore, the solution is

[x“’(n,:)] = {k"(r. J,n)][v‘”(n,z)] . (28)
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Once thel X*'] matrices have been determined, the next approxi-
mation for the generalized aerodynamic forces can be computed by per-
forming the operations indicated by Equation (23). The entire process
can then be continued until convergence is achieved,

Unfortunately, the initial investigation of transmitted shear
suppression reported in Reference | showed that the above-described
iterative scheme did not always converge. When it did converge, the
rate of convergence was oiten very slow, Convergence was obtained
in one case (Run B-6 of Reference 1) by examining a nonconvergent
run and adjusting certain elements in [£]) accordingly., In that case,
as well as others, it was observed that some of the modes have natural
frequencies that are very close to the aerodynamic exciting forces which
occur at harmonics of the blade rotational frequency (see Appendix II).
It was also found that the iteration would converge when the torsion modes
were ignored but would diverge when these modes were introduced,

Consequently, the above iterative method of solution was closely
scrutinized from several points of view, Attempts were made to develop
general criteria which would insure convergence in advance, These I
attempts were unruccessful due, in large part, to the complexity of the
aerodynamic, inertial,and elastic interactions as expressed, say, by
the operations implied in Equation (23).

The above-mentioned closeness of some of the naturzl mode
frequencies to those of the exciting forces led to examination of the
magnitudes of the determinants of the [F] matrices, These varied
greatly in magnitude; at some harmonics, they were as large as 10-!
but at others were as small as 10-8, Surprisingly, the third harmonic,
which was the smallest, did not differ at all between a rapidly conver-
gent iteration and a divergent one, An increase of about 4 percent,
from 5.140to 5. 330, in the natural frequency of the first symmetric J
and antisymmetric torsion modes increased the magnitude of the
determinants of the fifth and lower-order harmonics by as much as
39 percent on the nne hand but decreased the magnitude of the deter-
minants of the six'h and higher-order harmonics by as much as 33
percent on the other, A substantial improvement was gained, though,
by increasing the frequencies of the same modes to 25.0n; i, e,, well
beyond the twelfth harmonic, The magnitudes of the smallest deter-
minants increased in this case by factors of over 103, It was concluded *
that nothing practically useful could be done in the way of small fre-
quency adjustments to avoid resonance,

A series of numerical experiments with the use of 'iteration
factors' or ''gain factors' showed sufficient promise that this approach
was selected to provide convergent iterations., In addition, a method
for determining improved initial conditions for the iteration was devel-
oped. These two steps, which are described below, permitted all cases
to be iterated successfully,
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Iteration factors were applied to the iterative scheme in two
ways; first, in the computation of the generalized aerodynamic forces
[¢land, second, in the computation of the generalized coordinates[x].
First, Equation (23) for the generalized forces can be rewritten as

[G (t—/)(nj)] - ["fa (I)][G“")(n,f)]

4.[56([)][#{)(“"’(0, 1, x4z, 22)}]- (29)

where[f,] is a column matrix of iteration factors that differ for each
mode but are independent of n, and [l-f‘] is a colurm matrix whose
elements are one minus the iteration factors. If the elements of lfs]
are all unity, Equation (29) reduces to Equation (23). In the limit
when a solution is achieved, [f] becomes equal to [¢‘*?] and Equa-
tion (23) is also recovered. When Equation (29) is substituted on the
right-hand side of Equation (27), it becomes effectively an additional
quasi-steady aerodynamic term which can be determined empirically
from observation of the trend of successive iterations. Secondly,
Equation (28) can be rewritten in a similar way as

[, n) = [1-& @ ][ x“"n2)

+[E ] [Frrm] ¥y O n0)]. (30)

where [f,] is a column matrix of iteration factors that differ for each
mode but are independent of 7, and [f-f;] is a column matrix whose
elements are one minus the iteration factors. Again, if the elements
of[fx] are all unity, Equation (30) reduces to Equation (28) and,in the
limit when a solution is achieved, [F*|[v'*)] becomes equalto [x**”]
and Equation (28) is recovered, )

Figure 5 is a schematic diagram of the complete computational
procedure showing the solution for the harmonic motions, required pitch
angles, and residual root shears, The overall process is repeated until
the percentage variations in the generalized coordinates from one overall
iteration to the next are below prescribed values,

The use of the iteration factors was implemented by adapting
the computer program to run a prescribed number of iterations with
a giver set of iteration factors and then to stop with all the results
saved on tape, This permits resumption of the iteration, starting
with the saved results but a different set of iteration factors, Further-
more, the results of the converged solutions can be saved from one
case and used as initial conditions in subsequent cases, thus providing
a significant improvement in initial conditions for the iteration of cases
with higher harmonic shear suppression,

In Appendix [V,examination is made . of the actual procedures

that were used in obtaining solutions for the various cases at one flight
condition,
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RESULTS OF COMPUTATIONS FOR PITCH-ANGLE INPUTS REQUIRED
'O ELIMINATE NONCANCELING OSCILLATORY ROOT SHEARS

SCOPE OF NUMERICAL ANALYSIS

Computations to eliminate noncanceling vertical and/or inplane
root shears were performed for rotor configurations similar to that of
the UH-1A helicopter corresponding to Flight Conditions DN65A, DN66A
and DN67A of Refererice 6, In all computations, the flexural motions
of the blade were represented by the first two symmetric and the first
two antisymmetric bending modes, and the first two torsional modes,
Pitch deflections were represented by the first symmetric and the fivst
antisymmetric pitch modes (> and ¢, ), while deflections in the differ-
ential pitch-control modes (¢, and ) were specified to be zero,

The deflections in the differential pitch-control modes were
set equal to zero by the application of two of the four constraint equa-
tions for each harmonic number » [see Equations (7) and (8)]. At
n = 0, since the sine coefficients are zero, the one remaining con-
straint equation was used to prescribe the desired thrust load per
blade (a value of 3200 pounds was used in all computations), At » =],
the two remaining prescribed variables are the cosine and sine com-
ponents of the teetering motion which were used to establish the desired
tip-path-plane position, For n>], the constraints are that either the
harmonic coefficients of the root shears or the harmonic coefficients
of the first control mode are to be zero. In particular, at the even
harmonics,

(A,S,) = O
(8,8n) = O
(Ancz) o

(ancl ) £ 0 J
and at the odd harmonics,_

V
3
"

2,4,6,8,10,12

(-Anpﬂ) =0

(’8’,0”) = 0 ) ,7:3’5.7. 9,11.
(AnCl) =0

(8,6,) =0

For rotor configurations corresponding to Flight Conditions
DN65A (u = 0.076) and DN67A (u= 0.259), pitch-control inputs and
root shears were computed for conventional control and for five
other configurations for which various harmonic noncanceling root
shears were prescribed to be zero. For the rotor configuration
corresponding to Flight Condition DN66A (4= 0,215), data were
computed for conventional control and one other configuration for
which various harmonic noncanceling root shears were prescribed
to be zero. A listing of pertinent flight condition parameters is given

19

Tule . iy, A e e,

R _‘.JI‘_



-

in Table I,while a listing of the various configurations for which
numerical analyses were performed is given in Table II, which also
lists the rotor performance data for the cases analyzed. Listings

of the harmonic root shears and the required rotor blade pitch angles
for each of the cases analyzed are given in Tables 1II through VIII,

RESULTS OF NUMERICAL ANALYSIS -- FLIGHT CONDITION DN67A,
m=1,259

The vertical and inplane harmonic root shears for all cases
investigated for Flight Condition DN67A are listed in Table III. Table IV
lists the corresponding data on the harmonic pitch-angle inputs required
to eliminate noncanceling vertical and iuplane root shears along with the
conventional control pitch schedule. Comparisons of the azimuthal varia-
tions of the noncanceling vertical root shears, collective pitch-control
schedules, noncanceling inplane shears,and cyclic pitch-control schedules
are shown in Figures 6, 7, 8,and 9, respectively.

The largest transmitted vertical harmonic shears for this flight
condition occur at the second and fourth harmonics (Figure 6). Thus,
the application of second and fourth harmonic pitch control eliminates
the principal part of the oscillatory vertical root shear., When higher
harmonic pitch control is applied at » =2, 4, 6, 8, 10,and 12, a con-
stant value of 4,5y = 3200 is maintained throughout the azimuth (not
shown in Figure 6 for clarity). The pitch-angle requirements for elim-
inating the second and fourth harmonic vertical root shears remain
approximately the same whether or not the noncanceling vertical shears
for the sixth through twelfth harmonics are eliminated. Comparatively
large collective pitch inputs are required through the tenth harmsonic
to eliminate the vertical root shears, while the twelfth harmonic vertical
shear could be eliminated by comparatively small pitch inputs., The
presence of the comparatively large pitch inputs at the harmonics greater
than the fourth yields a somewhat irregular collective pitch schedule in
comparison to that required for eliminating only the second and fourth
harmonic vertical shears as shown in Figure 7. The pitch-control
schedule for eliminating the second and fourth harmonic vertical shears
is approximately the same as that presented in Reference 1 (where
the torsional responses were neglected), while that for eliminating
all noncanceling vertical shears varies from that of Reference 1
principally in the sixth and tenth harmonics, The primary reason
for the difference in the results is believed to stem from the inclusion
of the torsional degrees of freedom in the analysis conducted herein
rather than from the inclusion of the inplane degrees of freedom, In
Reference l, it was found that the inclusion of the torsional modes
effected only.small changes in the harmonic root shears and pitch
schedule for conventional control. Quite likely, a similar result

“would have been obtained herein,since the dynamic response in the

torsjonal modes was comparatively small for conventional control,
When higher harmonic pitch-control inputs are applied, the dynamic
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response in the torsional modes increases significantly, and the
required pitch-control inputs must be correspondingly altered to
compensate for the extraneous angle-of-attack changes effected by
the response in the torsional modes, Figures 10 and 11 show com-
parisons of the tip responses in the first antisymmetric and sym-
metric torsion modes, respectively, for conventional control and
several other higher pitch-control configurations, .and the influ-
ence of the higher pitch-control inputs on the torsional response is
quite evident,

As had been found in Reference 1, the requirement for the
comparatively large higher harmonic pitch inputs to eliminate com-
paratively small harmonic vertical shears stems from the effect of
the dynamic response of the rotor. When higher harmonic pitch con-
trol was applied at n>2, it was found that, for most of the higher
harmonics, the contribution of the aerodynamic forces to the root
shears increased considerably., Thus, a compensating increase in
the inertia forces was required to render the resultant shear zero,
For the second harmonic pitch-control inputs, the contribution of the
aerodynamic forces to the vertical root shear decreased to about one-
half its value for conventional control such that a comparatively small
second harmonic pitch-control input was required to eliminate the
largest of the transmitted vertical shears, The desirability of elim-
inating transmitted vertical shears above the second harmonic by
means of higher harmonic pitch control at the blade root is thus
questionable. As suggested in Reference 1, the situation might be
improved by the application of a different control mode,such as differ-
ential rotation of the inner and outer sections of the blade, which might
change the relative magnitudes of the aerodynamic and inertia root
shears.

The pitch-control schedules required to eliminate the trans-
mitted inplane root shears are also listed in Table IV, and the corre-
sponding vertical and inplane harmonic root shears are listed in Table
III. Azimuthal variations of the noncanceling inplane root shears are
shown in Figure 8. Root pitch control can be applied to eliminate all
the harmonic transmitted shears except the first inplane harmonic.
The first harmonic root pitch control is unavailable because it is
necessary for providing ordinary cyclic pitch control of the tip-path
plane. Of the transmitted inplane shears that can be eliminated, the
largest occur at the third and seventh harmonics. The magnitudes
of the third and seventh harmonic inplane shears are about equal,
and the seventh harmonic inplane shear is larger than the fifth, prob-
ably because of the proximity of the frequency of the second chordwise
bending mode to the seventh harmonic of the rotor speed. As seen in
Figure 9, the third and seventh harmonic pitch-control schedules were
relatively unaffected when fifth, ninth, and eleventh harmonic pitch
control were applied to eliminate the corresponding harmonic inplane
root shears. The third harmonic pitch-control input is significantly
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greater than those for the higher harmonics, and those of the ninth
and eleventh harmonics are quite small. The conventional cyclic
pitch-control schedule is also practically unaffected by the appli-
cation of higher odd harmonic pitch-control inputs. As had been
fsund in the case of the vertical shears for even harmonics, the
application of higher harmonic pitch-control inputs leads to an
increase in the contribution of the aerodynamic forces to the root
shear for most of the odd harmonics; again, a compensating increase
in the inertia forces is required to render the transmitted inplane

forces zero.

The application of higher even harmonic pitch-control inputs
to eliminate transmitted oscillatory vertical root shears also effects
changes in the magnitude of the harmonic components of the inplane
shears. The converse is also true; that is, the application of higher
odd harmonic pitch-control inputs to eliminate transmitted oscillatory
inplane root shears effects changes in the magnitude of the harmonic
components of the vertical root shears. Some of these changes in
magnitude of the root shears were quite significant. For example,
in Table III, it is found that the seventh harmonic of the inplane shear
for conventional control has a value of 33,0 pounds, When second and
fourth harmonic pitch-control inputs are used to eliminate the second
and fourth harmonics of the vertical shear, the seventh harmonic
inplane shear increases in magnitude to a value of approximately
160 pounds. If higher harmonic pitch inputs are applied at all even
harmonics from » = 2 to n = 12 to render the total vertical shear
constant throughout the azimuth, the value of the seventh harmonic
inplane shear increases further to a value of approximately 485
pounds, The increase was noted to occur principally in the inertia
forces. The azimuthal variations of the inplane shear for these two
conditions are shown in Figure 8, and it is seen that the seventh har-
monic of the inplane shear has a magnitude of approximately one-third
that of the first harmonic (which is transmitted to the drive shaft as
a steady component and at 2/rev) when higher harmonic pitch inputs
are applied at all even harmonics from n = 2to n = 12. The penalty
in applying pitch control at harmonics above # = 2 is thus reflected
in the root shears not only by significant increases in the transmitted
aerodynamic forces but also by significant increases in the transmitted
inertia forces.

When odd harmonic pitch control was applied at » = 3 and 7,
the fourth harmonic vertical shear increased from 57. 3 pounds to
114.5 pounds, while the second harmonic vertical shear decreased
from 250 pounds to 184 pounds. The changes in all other noncanceling
vertical shears were less pronounced, and the application of higher
harmonic pitch control at all odd harmonics from » = 3 through'n = 11
did not effect further significant changes in the noncanceling vertical
shears (see Figure 6).
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When higher harmonic pitch-control inputs were applied at
n =2, 3, 4,and 7 to eliminate the largest noncanceling vertical and
inplane shears simultaneously, the magnitudes of the required har-
monic collective pitch control inputs at # = 2 and 4 were found to be
larger than those for the case where the noncanceling vertical shears
were eliminated only at » = 2 and 4 (see Figure 7). In particular,
the requirement for the amplitude of the fourth harmonic pitch-control
input increased from 0.7 degree to 1.29 degrees, The harmonic cyclic
pitch-control input at n» = 3 was somewhat less than that for the case
where the noncanceling inplane shears were eliminated only at » = 3
and 7, while the harmonic cyclic pitch-control input at » = 7 increased
significantly from 0, 23 degree to 1. 36 degrees, leading to the rather
irregular cyclic pitch-control schedule shown in Figure 9. These
results are not surprising in view of the preceding discussion with
regard to the effect of higher harmonic pitch-control input on the
generalized aerodynamic forces and root shears. For example, when
higher harmonic pitch control was applied at » = 2 and 4, the magni-
tude of the inplane root shear at the seventh harmonic increased from
a conventional-control value of 33 pounds to a value of 160 pounds.
Also, when higher harmonic pitch control whs applied at.» = 3 and 7, the
magnitude of the vertical root shear at the fourth harmonic increased
from a conventional-control value of 57 pounds to a value of 115 pounds.
The cited increase in the inplane shear was due primarily to an increase
in the inertia forces associated with the increased response in the second
chordwise bending mode, while the cited increase in the vertjcal shear
at » = 4 was due primarily to an increase in the generalized aerodynamic
forces,

COMPARISON OF RESULTS -- FLIGHT CONDITIONS DN67A, DN66A,
AND DNo65A .

In the preceding section, a detailed discussion was presented
of the results of the computations to eliminate noncanceling root shears
for Flight Condition DN67A,for which the advance ratio 4= 0.259. The
scope of the computations for Flight Condition DN65A, for which « = 0,076,
was the same as that of Flight Condition DN67A. For Flight Condition
DN66A, for which x4 = 0.215, only two cases were investigated; namely,
that of conventional control and the condition in which both the two largest
vertical and the two largest inplane transmitted shears were eliminated
simultaneously. The rotor rotational speed was the same for all flight
conditions,

A listing of the harmonic root shears for all cases investigated
for Flight Condition DN65A is given in Table V, while Table VI lists the
corresponding required pitch angles. The harmonic root shears for
both cases investigated for Flight Condition DN66A are listed in Table
VII, and Table VIII lists the corresponding required pitch angles,. Com-
parisons of the azimuthal variations of the noncanceling vertical root
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shears, collective pitch-control schedules, noncanceling inplane shears,
and cyclic pitch-control schedules are shown in Figures 12, 13, 14 and
15, respectively, for «=0,076. In the same order, comparisons of

the data for « = 0,215 are shown in Figures 16 through 19,

Comparison of the collective pitch-angle inputs for Flight
Conditions DN65A (= 0,076) and DN67A (&= 0, 259), for the cases in
which the second and fourth vertical harmonic shears were eliminated,
shows a decrease in the pitch-angle requirement atn = 2 as the advance
ratio decreases but an increase in the fourth harmonic pitch angle
requirement. This requirement appears to be associated with the
increase in the fourth harmonic vertical shear and the fourth har-
monic generalized aerodynamic force, which are greater at «= 0.076
than they are at 4« = 0,259, The second harmonic pitch-angle require-
ment at . = 0,076 is approximately one-half that at # = 0.259,and the
smaller magnitude of the pitch-control requirement at 4« = 0. 076 again
appears to be associated with the smaller vertical shear and the smaller
generalized aerodynamic force.

The collective pitch-angle requirements to eliminate the har-
monics of the transmitted shears above » = 4 atu = 0,076 are quite
small (Figure 13) and appear to be related to the magnitudes of the
vertical shears for these harmonics, When the second and fourth
harmonic vertical shears are eliminated, the azimuthal history of the
vertical shear, chown in Figure 12, is virtually constant, Comparison
of the collective pitch-control schedules between the case for which all
transmitted vertical shears were eliminated and that for which only the
second and fourth harmonic vertical shears were eliminated shows very
little difference in the pitch-control schedules at 4 = 0.076 (Figure 13),
In contrast, at « = 0, 259, the collective pitch-control schedule for
eliminating all transmitted harmonic vertical shears showed significant
amounts of pitch-control inputs above 7 = 4 in comparison to those at
n=2and 4 (Figure 7),

The magnitudes of the harmonic components of the transmitted
inplane shears decrease substantially as the advance ratio decreases
from 0. 259 to 0,076, although the third and seventh harmonics remain
the two largest components for both advance ratios, At« =0.076, the
third harmonic pitch-control input appears to be quite large in com-
parison to the magnitude of the third harmonic inplane shear, and also
in comparison to the seventh harmonic pitch control input required to
eliminate an inplane shear of comparable magnitude, The pitch-angle
requirements to eliminate the remaining odd harmonic inplane shears
are quite small, thus being comparable in magnitude to the harmonic
components of the inplane shears. Also, at 4 = 0.076, the pitch-angle
requirements at the third and seventh harmonics remainad practically
the same whether or not the remaining odd harmonic shears were
eliminated (Figure 15), whereas small changes were shown for these
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conditions at 4 = 0,259, Because of the comparatively low harmonic
content in the inplane shear above the first harmonic, the azimuthal
history of the total noncanceling inplane shear per blade (Figure 14)
is dominated by its first harmonic content,

At = 0,259, a pronounced effect was found of higher even
harmonic pitch-control inputs on the harmonic components of the
total inplane shear, At = 0,076, this coupling effect was substan-
tially diminished such that the azimuthal variation of the inplane shear
was essentially the same as that for the conventional control (Figure 14)
in contrast to that at « = 0. 259 (Figure 8).

The collective and cyclic pitch-control schedules to eliminate
the second and fourth harmonic vertical shears and the third and
seventh harmonic inplane shears simultaneously are shown in Fig-
ures 13 and 15, respectively, for «= 0,076, The second harmonic
pitch-control input decreases somewhat from the case where only
the second and fourth harmonic vertical shears are eliminated,
while the fourth harmonic control input shows a nominal increase,

The cyclic pitch-control inputs at the third harmonic show a some-
what larger increase from the case where only the third and seventh
harmonics of the inplane shear were eliminated,while the increase in
the seventh harmonic pitch-control input is nominal,. The change in
amplitude in the third harmonic was also accompanied by a change in
phase of approximately 85 degrees, which led to a somewhat pronounced
difference in the cyclic pitch-control schedule for the two case¢s (Figure
15). Atx = 0,259, a phase shift of approximately 120 degrees also
occurred, but the change in amplitude of the seventh harmonic pitch-
control input-obscured the phase shift of the third harmonic in the
comparison of the pitch control schedules (Figure 9).

Comparison of the azimuthal variations of the noncanceling
vertical root shears for Flight Condition DN66A, . = 0, 215, for con-
ventional control and higher harmonic pitch control at n = 2, 3, 4,
and 7 is shown in Figure 16, Similar comparison of the collective
pitch-control schedules is shown in Figure 17, the inplane shear in
Figure 18, and the cyclic pitch-control schedule in Figure 19,

As might have been expected, the largest transmitted vertical
shears occurred at the second and fourth harmonics, and the largest
transmitted inplane shears occurred at the third and seventh harmonics.
The second and fourth harmonic vertical shears, however, were smaller
for this flight condition (« = 0. 215) than for either of the other two cases
investigated (« = 0.076 and « = 0, 259), In contrast, the seventh harmonic
inplane shear for this case was the largest of the three cases,while the
third harmonic inplane shear had an intermediate value. The collective
and cyclic pitch-control inputs to eliminate the second, third, fourth,
and seventh harmonic transmitted shears simultaneously were not as
severe as for « = 0, 259.as might be expected.
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The various comparisons of the cyclic and collective pitch
control schedules for all cases investigated suggest that an optimization
procedure would be required to implement a suitable pitch-control
schedule which would minimize rather than eliminate the transmitted
vertical and inplane shears,

It is also quite evident that certain penalties exist in applying
a higher harmonic root pitch-control system to eliminate some of the
transmitted vertical and inplane shears., Further computational efort
would be required to assess the effects of certain problem areas in
the application of higher harmonic pitch-control inputs, For example,
it may be desired to eliminate only the second harmonic vertical root
shear rather than both the second and the fourth, This collective pitch
schedule could minimize the penalties sustained with respect to the
generalized aerodynamic forces and inertia forces in the harmonic
vertical and inplane root shears above » = 2, A less ambitious
simultaneous elimination of transmitted harmonic vertical and
inplane shears also appeared to be desirable, particularly at the
high advance ratios. The pitch angle requirement to eliminate
the seventh harmonic inplane shear at 4 = 0,076 was 0. 16 degrec,
At 4= 0,215, it was 0,27 degree, but'at .= 0,259, it rose to
1.36 degrees., Thus, at 4 = 0,259, the pitch-angle requirement
would appear to be disproportionate in comparison to those at the
lower advance ratios,

Several factors not analyzed under the study conducted herein
could also cause significant differences in the pitch-schedule require-
ments. Among these are the rotor rotational speed and the associated
change in frequency of the various vibration modes. The response in
the first torsion mode, for example, produces a substantial angle-of-
attack change, particularly in the highly loaded outboard section of the
blade, which, in turn, effects a change in the pitch-angle requirement
at the blade root, The proximity of the frequency of the second chord-
wise bending mode to the seventh harmonic of the rotor rotational
speed was also instrumental in effecting large seventh harmonic pitch-
angle requirements to eliminate the transmitted inertial forces asso-
ciated with this mode,
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ESTIMATED EFFECT OF HIGHER HARMONIC
PITCH CONTROL ON PERFORMANCE

A summary of the performance characteristics for con-
ventional and higher harmonic pitch control for all cases and flight
conditions investigated is given in Table II, The required thrust
load per blade for each configuration was constrained to equal the
steady component of the root shear per blade, and a value of 3200
pounds was used in all cases,

At the lowest advance ratio (« = 0.076), the total drag per
blade and, hence, the associated rotor torque are almost invariant
with respect to the type of harmonic pitch control applied at the blade
root. Also, atw« = 0,215, the total drag per blade for conventional
control is practically the same as that for the case of higher har-
monic pitch control appliedat» =2, 3, 4, and 7. At x = 0,259, the
total drag per blade for higher harmonic pitch controi‘applied-atn = 2
and 4,»n =3and 7, andn =3, 5, 7, 9, and 11 was again approxi-
mately the same as that for conventional control, For higher har-
monic pitch control applied at » = 2, 4, 6, 8, 10,and 12 at « = 0,259,
the total drag per blade increased by approximately 5 percent from
that at conventional control ; when higher harmonic pitch control
was applied at » = 2, 3, 4,and 7, the total drag increased by more
than 20 percent from its value at conventional control. The sharp
increase in the total drag for the latter case is attributed to the high
instantaneous blade angles of attack associated with this case, and
the corresponding nonlinear variation of the drag with angle of attack.
The high instantaneous angles of attack stem primarily from two
sources; namely, the root pitch-control inputs (Figures 7 and 9)
and the responses in the antisymmetric and symmetric torsional
modes (Figures 10 and 11). In these figures, it is seen that the
peak values of the angles of attack are much larger for higher
harmonic pitch control applied at » = 2, 3, 4,and 7 than for any
other case investigated,

The mean effective angle of attack (Figure 20 and Table IX)
exhibits little change with the type of pit. a control applied at the blade
root at each advance ratio investigated. This result is not surprising
since the mean effective angle of attack is closely associated with the
total lift carried by each rotor blade, which was constrained to a
constant value for all cases investigated.

At g = 0.259, the mean effective angle of attack drops sharply

at the inboard section of the blade. The resultant total drag is rela-
tively unaffected, however, because the drag coefficient does not
change appreciably for comparatively large changes in angle of attack
at the low Mach numbers,
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Surprisingly, the required control moment shows more varia-
tion among the various types of pitch control at « = 0,076 than at « =
0.259, except for the case of higher harmonic pitch control applied at
n=2, 3, 4, and 7. A detailed examination of the constituent terms
[Equation (55)] shows that the significant part in any variation of the
control moment from that of conventional control was due to the change
in response of the antisymmetric chordwise bending modes, which exert
a moment about the rotor hub because of preconing.

At 4 = 0.076, the side force increases by approximately 8
percent from its conventional-control value when even higher harmonic
pitch control is applied or when both even and odd higher harmonic
pitch controls are applied simultaneously. The side force decreases
by approximately 3 percent when odd higher harmonic pitch control is
applied. At 4= 0,259, the side force decreases by approximately 9
percent from its conventional -control value when even or odd higher
harmonic pitch control is applied, and it decreases by about 14 percent
when even and odd higher harmonic pitch controls are applied simul-
taneously, At «=0,215, the side force decreased by approximately
9 percent from its conventional-control value when higher harmonic
pitch control was applied at n = 2, 3, 4, and 7. In all cases, the change
in the side force was due primarily to changes in the contributions from
the inertia forces of the rotor blades to the side force [ Equation (56)]
rather than from changes in the contributions from the aerodynamic
forces,

At . = 0,076, the longitudinal force [x-Force, Equation (57)]
remained unchanged from its conventional-control value when odd higher
harmonic pitch control was applied, and it decreased by approximately 5
percent when even higher harmonic pitch control was applied, Atu= 0,259,
the longitudinal force increased slightly from its conventional-control value
when even higher harmonic pitch control was applied and decreased slightly
when odd higher harmonic pitch control was applied. When higher har-
monic pitch control was applied at » = 2, 3, 4, and 7, the longitudinal
force decreased from its conventional-control value by approximately
8 percent at « = 0,076, by approximately 6 percent at »« = 0,215, and
by approximately 50 percent at 4 = 0. 259, The differences in the effect
of higher harmonic pitch controls on the longitudinal forces at the various
advance ratios are associated with the amplitudes of the applied higher
harmonic pitch controls, which also correspond more closely to the mag-
nitudes of the dynamic responses of the rotor blades than to the magnitudes
of the aerodynamic forces. Examination of the constituent terms in the
longitudinal force [ Equation (57)] shows that the differences in the longi-
tudinal forces are due primarily to changes in the contributions from the
inertia forces rather than from the aerodynamic forces. In particular,
for higher harmonic pitch control applied atn=2, 3, 4, and 7 at u=
0.259, the response in the first antisymmetric inplane bending mode
was approximately one-half that of the conventional-control value,
which accounted for the 50-percent change in the longitudinal force,

28

|
i

e

- ol

|




e T A PR

PRIy

d

From the limited analysis which had beer « onducted herein
with respect to flight conditions, rotor rotational sp«ed, etc., it
appears that the most severe penalty of applying a higher harmonic
pitch-control system would lie in the increased power required to
overcome the increased drag forces. The higher drag forces, in
turn, stem from the higher angles of attack required to eliminate
certain of the transmtted shears. Since the inertia forces contribute
substantially to the transmitted shears in many cases, further inves-
tigation would be required to evaluate the effect of dynamic parameters

on the performance characteristics of rotors with higher harmonic
pitch control,
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CONCLUSIONS AND RECOMMENDA TIONS

The following specific conclusions were reached on the basis
of this investigation:

1. All noncanceling vertical root shears of the two-
bladed teetering rotor from the second through
twelfth harmonics can be eliminated with higher
harmonic pitch-angle control introduccd at the
blade root (as in conventional control systems)
for all flight conditions investigated. The largest
part of the oscillatory transmitted vertical root
shears can be removed by using pitch-angle inputs
only at the second and fourth harmonics.

2, All noncanceling inplane root shears of the two-
bladed teetering rotor from the third through
eleventh harmonics can be eliminated with
higher harmonic pitch-angle control introduced
at the blade root for all flight conditions inves-
tigated. The largest of these oscillatory trans-
mitted inplane root shears can be removed by
using pitch-angle inpute at the third and seventh
harmonics.

3. For the two-bladed teetering rotor, the first
harmonic inplane shear {the largest transmitted
shear) cannot be eliminated by root pitch control,
The first harmonic ront pitch control is unavailable
because it is necessary Jor ordinary cyclic pitch
control of the tip-path plane,

4. Except for the first harmonic inplane shear,
the largest of the cited nscillatory transmitted
vertical and inplanc¢ roct shears can be eliminated
simultaneously with second, third, fourth, and
seventh harmonic pitich-angle control introduced
at the blade root., The resulting pitch-angle
requirements are different from those cited in
Conclusions 1 and 2 for the same flight condition,

5., The amplitudes and phase ar.jles of the pitch
inputs required to eliminate only the noncanceling
vertical root shears, only the noncanceling inplane
root shears, and both simultaneously also vary
appreciably with flight condition, In general,
the higher harmonic pitch-angle requirements
for eliminating transmitted harmonic root shears
become more severe with increasing advance ratio,
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6. It appears undesirable to attempt to eliminate all
noncanceling harmonic vertical and inplane root
shears using a control system with pitch inputs
introduced at the blade root, The higher har-
monic pitch inputs, which are introduced to
eliminate transmitted root shears, excite
dynamic blade motions, and the inertia forces
due to these motions also produce root shears,
At some harmonic numbers (depending on blade
parameters and flight condition), the roo* shears
due to the inertia forces are almost equal and
opposite to the root shears due to the corre-

i sponding aerodynamic forces. Consequently,
large pitch-angle inputs and large blade dynamic
motions may result from the pitch-angle inputs
designed to eliminate comparatively small root
shears. Under these conditions, it would be
undesirable to introduce control inputs at certain
harmonic numbers,

7. The effect of higher harmonic pitch control on
{ rotor performance was small for most of the
| cases analyzed, Under certain conditions,
however, the high instantaneous angles of attack
required to eliminate certain of the transmitted
root shears produced much larger drag forces
on the rotor,

8. Instabilities in the iterative solution of the equations
of motion may stem from the involved dependencies
of the aerodynamic loadings on the blade dynamic
motions., It has been found possible to iterate the
equations of motion successfully to solution by
providing improved initial conditions on the gener-
alized forces and coordinates, and by using 'itera-
tion factors'' on them as well, These factors could
be chosen differently for each mode and were found
to depend on the flight condition and the type of
harmonic pitch control applied.

@
£‘

The results of this study, which indicate that appropriate
pitch-angle inputs can produce significant reductions in the trans-
mitted oscillatory root shears, offer definite encouragement toward
the application of this approach to reduce fuselage vibrations., To
further this goal, additional research is recommended to:

1. Extend the present numerical analysis to rotor

configurations other than the UH-1A two-bladed
teetering rotor.
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Study the application of symmetric and antisym-
metric differential pitch-control motions of the
inner and outer sections of the blade to eliminate
transmitted harmonic shears, particularly the
first harmonic shear of the two-bladed teetering
rotor and at harmonics where pitch inputs

at the blade root tend to excite large dynamic
responses,

Extend the analysis to determine the pitch-control
configurations which would provide the optimal
rotor characteristics with respect to transmitted
shears, blade dynamic motions,and performance.

Study the application of a servo system for con-
trolling the pitch inputs which would use measured
transmitted shears as a feedback signal. This
effort is recommended since large differences in
the higher harmonic pitch-angie inputs are required
at different flight conditions,
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Table |

PARAMETERS FOR ADJUSTED FLIGHT CONDITIONS

ADJUSTED FLIGHT CONDITION®

PARAMETERS
DN6SA DN66A DN67A
V¢ = FORWARD VELOCITY, ft/sec 55.1 155.4 188.0 1
knots 32.6 92.1 1.4
fL = ROTOR ANGULAR VELOCITY, rad/sec 32.8 32.8 32.8
rpm 313 313 313
44 = ADVANCE ZATI0 0.076 0.215 0.259
o = AIR DENSITY, slugs/ft3 0.002150 | 0.002155 | 0.002155
W, = LOAD/BLADE, 1b 3200 3200 3200
o, = SHAFT ANGLE, deg 4.5 4.6 6.5
TIP-PATH-PLANE POSITION
RELATIVE TO SHAFT:
Py = FORWARD TILT, deg -2.02 -0.74 -0.65
A1g = LEFT TILT, deg -0.50 0.68 1.80
*THE ADJUSTED FLIGHT CONDITIONS DNG5A, DN66A, AND DN67A ARE SLIGHTLY DIFFERENT

FROM THE CORRESPONDING CONDITIONS OF REFERENCE 6.
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Table

EFFECT OF HIGHER HARMONIC PITCH-A
FLIGHT CONDITION DN6

COMPUTER RUN E2C

COMPUTER RUN EUE

COMPUTER RUN E3E

NPT

INPLANE ROOT SHEARS ARE NONCANCELING FOR n = ODD AND ARE CANCELING FOR n = 0 OR n = EVEN.

CONVENT IONAL CONTROL HIGHER HARMONIC PITCH HIGHER HARMONIC PITCH H
CONTROL AT n = 2,4 CONTROL AT n = 2,4,6,8,10,12

HARMONIC ROOT SHEAR® (ONE BLADE) [|HARMONIC ROOT SHEAR® (ONE BLADE) [HARMONIC ROOT SHEAR® (ONE BLADE) | HARMON|
VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE VER
n [ ampLiToo| RHASE |awpLiTuoe| EHASElawpuituoe| RHASE! ampLiTue| RHASE lampLivupe] KHASE |awpLiTuoe| RHADENaMpLITU
(1b) (deg) (1b) (deg) f (1b) (deg) (1b) (deg)fl (1b) (deg) (1b) | (deg) (1b)
o 32000 | o [ s08.6 0 3200 | o | 5155 | o [3200.0 o | s38.2 | o | 3200.0
1l 277w1.0 {-100.2] 1837.0 [-144.0 2764.6 |-109.2} 1435.0 [-139.7 [ 2760.0 [-109.2| 1435.0 [-139.9 2746.0
2| 250.5 | 163.0] 7w.0 | 10uu] 0 0 84.0 | 1666 O o | 1007 |163.7] 183.9
al| 2180 | 1s0.5| 3s.6 | 162.6] 100.6 | 127.5] 20.9 |-122.0] 105.1 | 131.4| wiw -nis.uf 299.4
Wl s7.3 | se.5| 2.8 | wwau] o 0 19.3 | 33.5] 0 0 26.5 | 38.1] 1145
5[ 68.0 | -25.3] 3.1 |-131.2) 9.2 | 13.3] 1s.2 | 83.3) iow.7 | s2.3| w5 | 72.90 75.0
6 150 [-n2.4| 23.8 |-136.7] 204 [-108.8] 3u.2 |-1us.6| O 0 9.5 |-158.8] 18.3
7 5.5 | 35.7| 33.0 | 1ei.4f w3 [ 33.3 1s9.6 [ 1e6.2f 7.8 | 96.5( usu.9 |-138.6] 5.6
8fl 183 [1260| 7.6 | e2.7| 9.5 |i27.8] 13.5 | 1s6.6 0 0 92,1 | twe 22.3
9 2.0 | -65.1| w.u [ 1.3 |-7v.6] 8.0 | ss.9f 5.0 | -55.3) 33.8 |172.0] 2.0
10f 200 {-er.0f we | maa 1es | -se.8] 0.4 |-1u3.3f o 0 21,2 |-22.8] 19.6
n .9 [rer7[  v.e | -ss.3f 2.2 [r07.2) 2.7 |sef w7 | 1358 6.0 |-3w.3ff 2.3
12 2.6 | 0 1.6 |83 1.8 | -01] 0.2 [-179.3] o 0 7.2 {1788l 1.8

*VERTICAL ROOT SHEARS ARE NONCANCELING FOR n = O OR n = EVEN AND ARE CANCELING FOR n = ODD.

AZIMUTHAL VARIATION OF nth HARMONIC ROOT SHEAR = (AMPLITUDE) x cos(nw + PHASE ANGLE),
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Table |11

GHER HARMONIC PITCH-ANGLE INPUTS ON ROOT SHEARS,
FLIGHT CONDITION DN67A, .= 0.259

RUN E3E COMPUTER RUN E6C COMPUTER RUN E7C COMPUTER RUN E8D
ONIC PITCH HIGHER HARMONIC PITCH HIGHER HARMONIC P1TCH HIGHER HARMONIC PITCH
2,4,6,8,10,12 CONTROL AT n = 3,7 CORTROL AT n = 3,5,7,9,11 CONTROL AT n = 2,3,4,7
EAR' (ONE BLADE) || HARMONIC ROOT SHEAR™ (ORE BLADE) [|HARMONIC ROOT SHEAR® (ONE BLADE) | HARMONIC ROOT SHEAR" (ONE BLADE)
U INPLANE VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE
awpLITuDE | RRASENampLiTuDE| FRADE | awpLiTupe( FHADE lampuiTuoe| SHASE |ampLiTuoe| FHASEJaneLiTuoE| SHASE (ampLiTupe| EHASE
(1) [(deg) | (1b) | (deg)| (1b) | (deg) i (ib) |(deg)| (1b) | (deg)] (1b) | (deg)| (1b) | (deg)
538.2 | 0 | 3200.0 | 0 | §13.1 o [[32000 [ o | s12.3 o |3000 | o [ e17.9 | o0
1435.0 |-139.9]| 2746.0 [-109.2| 1430.0 [-1u1.9]l 2744.0 |-109.3| 1403.0 [-141.9] 2761.0 |-100.2] 1079.0 [-161.9 !
100.7 | 163.7] 183.9 | 173.5] 4.9 | 1s7.4} 183.7 |176.3[ 7.4 | 173.8] o0 0 | 152.6 | 167.1 |
Wi |-nis.ul 299.4 | 16.0| 0 o | 30s.6 |13.2[ o o | 1.6 | 3uw3[ o 0
26.5 | 38.1f w5 | 102.8[ 23.4 | 108.3f 102.4 | 92.6{ 12.0 | 96.4| o 0 28.2 | 7.8
u.5 | 72.9] 75.0 | -27.5{ 18.5 |-166.2| 38.3 [-121.9( 0O o | 138.0 | s.8] 26.9 | 8w
9.5 |-158.8] 18.3 | -96.1| 31.6 |-136.8f 11.0 [-92.1 23.6 ([-163.3] 0.2 | -86.4| 113.3 | -6u4.6
u4.9 |-138.6] 5.6 | 32.0/ 0O 0 6.5 | 321 0 0 41 | -59.6] 0 0
92.1 | ol 22,3 [i2.9] 9.2 | 36.6[ 22.9 [129.1 3.4 [-62.5] 38.8 | 117.8] 140.1 [ -75.1
33.8 |172.0f 2.0 | -70.8] 5.3 [ 1830 2.1 [-78.8) o 0 0.5 | -20.5[ 18.3 |-124.0
21.2 |-22.8]f 19.6 | -s6.8| 6.2 | 120.5f 9.1 |-52.3] 6.7 | 93.3] 18.9 | -63.6 22.2 | 120.2
6.0 [-3uw.3l 2.3 [ 7.8l 2.8 [-107.3[ 2.4 |120.4f o 0 26 | 7] 3.5 | 70.4
.2 [7esl 18 |0 2 [7e.of o | o.2f .7 |7e.2] 16 | 179.9] 8.7 | -1.0
D.




Table | V

REQUIRED PITCH ANGLES TO ELIMINATE NONCANCELING ROOT SHEARS,
FLIGHT CONDITION DN67A, 4. = 0,259

COMPUTER RUN E2C COMPUTER RUN EYE COMPUTER RUN ESE
n | PITCH ANGLES wiTH PITCH ANGLES TO PITCH ANGLES TO
CONVENTIONAL CONTROL || ELIMINATE ROOT SHEARS | ELIMINATE ROOT SHEARS
AT h = 2,4 AT n = 2,4,6,8,10,12
AMPL I TUDE [PHASE ANGLES || AMPLITUDE|PHASE ANGLES || AMPLITUDE |PHASE ANGLES
(deg) (deg) (deg) (deg) (deg) (deg)
of 19.u0 0 19.54 0 19.54 0
1 6.28 59.2 6.77 59,5 6.76 59.4
2 1.09 153.6 1.1 153.7
3 0 0 0 0
4 0.70 65.6 0.73 68.9
5 0 0
s 0.67 - 10.4
7 0 0
8 0.90 -134.5
9 0 0
10 0.55 48.5
n 0 0
12 0.20 -106.2
COMPUTER RUN ESC || COMPUTER RUN E7C COMPUTER RUN ESD
" PITCH ANGLES TO PITCH ANGLES TO PITCH ANGLES TO
ELIMINATE ROOT SHEARS || ELIMINATE ROOT SHEARS | ELIMINATE ROOT SHEARS
AT n = 38,7 AT n = 38,56,7,9,1 AT n = 2,8,4,7
AMPL I TUDE [PHASE ANGLES|| AMPLITUDE|PHASE ANGLES ] AMPLITUDE|PHASE ANGLES
(deg) (deg) (deg) (deg) (deg) (deg)
of 19.42 0 19.42 0 19.54 0
| 6.3 58.9 6.3 56.8 6.80 59.6
2] o 0 () 0 1.29 160.1
3 1.17 50.5 1.26 ".0 0.94 - 69.5
v o 0 0 0 1.29 .8
s o 0 0.33 98.5 0 0
¢l o 0 0 0 0 0
7 o0.23 178.8 0.34 -179,7 1.36 139.2
8 0 0
9 0.04 109.3
10 0 0
n 0.05 -115.1
12
AZIMUTHAL VARIATION OF ntP HARMONIC PITCH ANGLE =
(AMPLITUDE) x cos(ny + PHASE ANGLE)
e e ——
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EFFECT OF HIGHER HARMONIC
FLIGHT CONDIT

—
COMPUTER RUN G1B COMPUTER RUN G2F COMPUTER RUN_63C
CONVENT I ONAL CONTROL HIGHER HARMONIC PITCH HIGHER HARMONIC PITCH
CONTROL AT n = 2,4 CONTROL AT n = 2,4,6,8,10,12

HARMONIC ROOT SHEAR® (ONE BLADE) [[HARMONIC ROOT SHEAR® (ONE BLADE) | HARMONIC ROOT SHEAR® (ONE BLADE) | HARM
VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE Vi

n fampLiTuoe| FHASE!aweLiTupe| FHASE hawpiituoe] RHASE|ampLiTuoe| RHASEfampLiTuoe| PHASE|ampLiTuoe| RHADE JawpLit
(1b) |(deg)| (1b) | (deg) § (1b) |(deg)| (b) | (deg)} (1b) | (deg)| (ib) |(deg) } (b

0 Il 3200.0 0 344.8 0 3200.0 0 343.4 0 3200.0 0 343.1 0 3200.
1 [ 24400 | 169.5| 1097.0 |-116.8 2440.0 | 169.4| 1065.0 |-119.7] 2440.0 | 169.4| 1060.0 |-119.7] 2uu2,
2 160.3 | &.2] 1.6 [ 137.8f o0 0 1w [ ) o 0 15.0 | 13.6] 170.
3§ 60.1 [100.3] 8.2 [-130.4f 1.5 [120.8] 11.6 |-65.0] 6.3 | 121,10 1.8 |-ewaf nz.
w | 69.7 | 20.2] 3.8 |-176.0) 0 0 1.9 | 90.0] o 0 12.5 | es.2f 7s.
5 | 26.6 |-18.8] 1.0 |101.,7f w1 | -15.0] 8.8 | 140.5] ue.8 | -11.6] 1.2 | 1s.0f 8.
6 3.7 |-166.4| 2.6 | 36.0f 5.5 |-177.7] 1.6 | -88.5] 0 0 7.7 |-s2f .
7 2.2 | 82.8 6.8 6.7 2.9 | 16.9] 10.9 w2] 3.2 | 0.2 297 | wa3f 2
8 0.8 |167.7] 1.2 [-17s.0f 0.5 [ 1231 3.6 | e7.3] o 0 2.9 | 9wof 0.
9 0.6 |[-161.4[ 0.4 2.3 0.6 |-168.4] 0.8 [137.4] 07 [-170.7] 1 |79 o
o) o9 | 60 o1 | w8 1.0 | -1.7[ 0.9 [-152.8] o 0 1.2 [-122.8f 1.
n 0.3 | -6.3 0.1 | 7.5l 03 [ -0 0.7 |-72a] 0.3 | 7.2| 0.7 |-ss.8] 0.
120 o [a79.8] o1 |7e.6f 0.2 [-179.8] 0.1 | -1.3] o 0 0.1 | -1.3 ¥

*VERTICAL ROOT SHEARS ARE NONCANCELING FOR n = 0 OR n = EVEN AND ARE CANCELING FOR n = ODD.
INPLANE ROOT SHEARS ARE NONCANCELING FOR n = 0DD AND ARE CANCELING FOR n = 0 OR n = EVEN.
AZIMUTHAL VARIATION OF nth HARMONIC ROOT SHEAR = (AMPLITUDE) x cos(ny + PHASE ANGLE) .
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Table V

HIGHER HARMONIC PITCH-ANGLE INPUTS ON ROOT SHEARS,
FLIGHT CONDITION DN65A, .. = 0.076

63¢ COMPUTER RUN 6B COMPUTER RUN G678 COMPUTER RUN G8C
- PITCH HIGHER HARMONIC PITCH HIGHER HARMONIC PITCH HIGHER HARMONIC PITCH
,6,8,10,12 CONTROL AT n = 3,7 CONTROL AT n = 3,5,7,9,11 CONTROL AT n = 2,3,4,7
' (ONE BLADE) | HARMONIC ROOT SHEAR® (ONE BLADE){HARMONIC ROOT SHEAR" (ONE BLADE) || HARMONIC ROOT SHEAR® (ONE BLADE)
INPLANE VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE
uivoe| FHASE JweuiTupe| FHADE (wwpLituoe| HASE lawpriTupe| RHASE|awpLiTue| FHASEflaMPLITUDE| RHASE |ampLiTuoe| RHASE
(1b) | (deg) | (ib) | (deg)[ (1b) | (deg)) (ib) | (deg)] (ib) | (deg)j] ('b) | (deg)| (ib) | (deg)
a1 | o0 [s2000 [ o | sus9e | o [32000 [ o | se2 | o [[32000 | o0 | 3ue.1 0
60.0 |-119.7] 2442.0 | 169.4| 1089.0 |-116.2] 24u2.0 | 169.4| 1080.0 [-116.2[| 2440.0 | 169.3f 1027.0 |[-121.4
15.0 | 13.6] 170.6 a.7| o |-s1.7] 1707 3.6/ 1. f-s2.7) o 0 | 30.8 [ 26.u
1.8 |-es1f 7.2 | 7v.6| o0 o | nr.e | 739 o o [ 5.7 |-19.3] o0 0
125 | es.2] 78.3 | 30.5| 6.5 |160.1] 78.0 | 30| 6.0 | 169.0] o o | 5.8 |-107.9
1.2 [ ws.0f 18.8 | -9.2| 1.0 [-sr.2] 153 | 13 o 0 59.0 [ -1.1| 9.7 | 152.2
7.7 | =812 ww [-173.3] 39 | ar.ef w2 [-173.6] a4 | weofl 6.5 | 1704 5.5 [ -33.9
207 | wa] 2. | a7 o 0 21 | 3.3 o 0 2.8 | 26.2| o0 0
2.9 | ow.of 0.4 [-17w.3] 0.8 [1w.e] 0.5 |-178.2] 0.8 [12009] 0.7 | -11.3[ w5 | wo.s
11 | 177.9) 0.6 |-164.3[ 0.2 | es.7] 0.6 [-163.7[ o 0 0.6 [-170.5] 0.8 |-168.8
1.2 |-122.3] 1.0 w.2| 0.4 [-lus.6f 1.1 w4l 0.2 |-ueufl 1.0 [ -16| 0.8 [-73.9
0.7 |-55.8] 0.3 | -w.3| o |[-67.0f 0.3 [ -15.4 o0 0 0.3 |-17.5| 0.8 |-65.9
0.1 | -1.3] 0.2 [-17e.9| 0o | -1.3] 0.2 |180.0] 0.1 | -1.0f 0.2 [179.9] o4 | -1y
—e
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Table VI

REQUIRED PITCH ANGLES TO ELIMINATE NONCANCELING ROOT SHEARS,
FLIGHT CONDITION DN65A, 4« = 0.076

COMPUTER RUN G1B

‘Tm—n

COMPUTER RUN G2F

COMPUTER RUN @3C

PITCH ANGLES WITH
CONVENTIONAL CONTROL

PITCH ANGLES TO
ELIMINATE ROOT SHEARS

PITCH ANGLES TO
ELININATE ROOT SHEARS

AT n = 2,4 AT n = 2,4,6,8.10,12
AMPLITUDE [PHASE ANGLES || AMPLITUDE| PHASE ANGLES | AMPLITUDE| PHASE ANGLES
(deg) (deg) (deg) (deg {deg) | (deg)
0 17.45 0 17.42 0 17.42 0
1 1.71 ~-18.0 .77 -15.1 1.7 =15.1
2 0.59 2.2 0.59 2.3
3 0 0 0 0
4 0.81 13.9 0.80 15.4
5 0 )
8 0.10 -98.9
7 0 0
8 0.00 | -1%1.8
9 0 0
10 0.02 © 77.8
n 0 0
12 0.00% [ -108.%
=
COMPUTER RUN 868 COMPUTER RUN @78 COMPUTER RUN G8C
n PITCH ANGLES TO PITCH ANGLES TO PITCH ANGLES TO
ELIMINATE ROOT SHEARS [ ELIMINATE ROOT SHEARS | ELIMINATE ROOT SHEARS
AT n = 8,7 AT n = 3,5,7,9,11 AT n = 2,8,4,7
mmn;os mia ANGLES | AMPLITUDE mze ANGLES | AMPLITYDE mie n;m.es
(deg deg (deg) deg (deg deg
of 17.46 0 17.47 0 17.4% 0
1 1.70 -12.8 1.70 =-12,7 1,78 ~-12.6
2 o 0 0 0 0.49 1.9
] 0.52 -0.7 0.52 -0.7 0.97 ~85.5
4 0 0 0 0 1,08 8.5
5 0 0 0.03 35.8 0 0
6 0 0 0 0 0 0
7 0.05 19.9 0.05 25.4 0.16 38.4
8 0 0
9 0.0V 62.4
10 0 0
11 0.01 -135.4
12

AZINUTHAL VARIATION OF nP HARMONIC PITCH ANGLE
(AMPLITUDE) x cos(ny + PHASE ANGLE)
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Table VI

REQUIRED PITCH ANGLES TO ELIMINATE NONCANCEL ING ROOT SHEARS,
FLIGHT CONDITION DNG6A, . = 0.215

{ COMPUTER RUN F1B II COMPUTER RUN F8D
i PITCH ANSLES WITH PITCH ANOLES TO
! CONVENTI10* .L. CONTROL ELIMINATE ROOT SNEARS
i n ATn=2,804717
1 AMPL | TUDE PHASE ANGLES ANPLITUDE | PHASE ANGLES
(deg) (deg) (deg) (deg)
; 0 18.00 0 18.08 0
| 4.51 61.0 .74 61.5
2 0.62 165.9
3 0.78 -67.2
: 4 0.97 20.5
i
?’ 5 0 0
E" 6 0 0
: 7 0.27 153.6
E AZIMUTHAL VARIATION OF nth HARMONIC PITCH ANGLE =
; (MMPLITUDE) x cos(ny + PHASE ANGLE)
A S ———
i
1

kTR Ui

S d
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VERTICAL DEFLLCTION MODES
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Figure 1. SCHEMATIC DIAGRAM OF MODES USED TO DESCRIBE
MOTIONS OF A TWO-BLADED TEETERING ROTOR
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PLANE PERPENDICULAR
TO SHAFT

SHAFT AXIS

V= (FORWARD VELOCITY)

——— e —— AFT

/V,-ﬂrﬂ’,g cos a, sin¢

g %5

Lol N\ / .
\
/ \\/ s
\~ 7

A

Figure 2. RELATIVE VELOCITIES DUE TO FORWARD MOTION AND BLADE
ROTATION (REFERRED TO A SHAFT-ORIENTED REFERENCF SYSTEM)

V’ Sin-
h MIDCHORD
N = AX1S
9%
REFERENCE i Ez_»
PLANE Vi cos a_cosy _

A i

SHAFT AXIS b 1

SECTION A-A

Figure 3. TRANSVERSE VELOCITY OF BLADE MIDCHORD AXIS RELATIVE
TO AIR (INDUCED VELOCITIES NOT INCLUDED)
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i AERODYNAMICS OF ROTOR-WAKE SYSTEM |
(FLIGHT COND.) I COMPUTATION OF V,, WAKE GEOMETRY, l
AND INDUCED VELOCITY COEFFICIENTS l
(BLADE GEOMETRY ) I OF EQS. (50), (u3), AND (uu) I
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- COMPUTAT |ON OF (@ % N EvaLWATION OF
l oy "“Tw;"m““ s . ILsauran |
l 21 |eos. (15). (16). (17) i I
-9 '
= |
| S IMULTANEOUS EVALUATION OF I S
SOLUTION FOR BOUND AND GLAUERT COEFS o
| VORTICITIES, EQ. (41) 8Y EQ.(38) I w
(/'") (‘n ') | “T
I ‘"'l | o:d
| COMPUTATION OF | -
l AERODYNAMIC LOAD INGS =
inv EQS. (48), (49), AND (52) | g‘
O SN i A TN §
(AZIMUTHAL VAR IATION OF £ ¢
LOADINGS lk,m‘,d‘) 2
T
o
o e e e e e . e e e e e . e e §
I DYNAMIC RESPONSE, REQUIRED PITCH ANGLES —I ':'
| | =
| | 3
| EVALUAT 10N OF HARMONIC AMAL. | =
(MODE SHAPES) GENERALIZED AERO. {3°gi);'g} OF GENERALIZED =
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Figure 4. SCHEMATIC DIAGRAM OF THE ANALYTICAL PROBLEM OF EVALUATING
PITCH-ANGLE INPUTS TO ELIMINATE OSCILLATORY ROOT SHEARS
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NONCANCELING VERTICAL SHEAR, 1b

NONCANCELING VERTICAL SHEAR, 1b

Figure
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6. COMPARISONS OF AZIMUTHAL VARIATIONS OF NONCANCELING
VERTICAL ROOT SHEARS - FLIGHT CONDITION DN67A, 4= (C.259
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Figure 12. COMPARISONS OF AZIMUTHAL VARIATIONS OF NONCANCELING
VERTICAL ROOT SHEARS - FLIGHT CONDITION DN65A, «c = 0.076
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Figure 13. COMPARISONS OF COLLECTIVE PITCH CONTROL SCHEDULES

FOR ELIMINATING NONCANCELING HARMONIC ROOT SHEARS -
FLIGHT CONDITION DNE5A, .. = 0.076
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Figure 16.. COMPARISONS OF CYCLIC PITCH CONTROL SCHEDULES FOR
ELININATING NONCANCELING HARMONIC ROOT SHEARS -
FLIGHT CONDITION DN65A, ¢ = 0.076
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Figure 16. COMPARISON OF AZIMUTHAL VARIATIONS OF NONCANCELING

COLLECTIVE PITCH, deg

VERTICAL ROOT SHEARS - FLIGHT CONDITION DN66A, 2 = 0.215

-

0 180 70 30
AZIMUTH ANGIE, ¥, deg

Figure 17. COMPARISON OF COLLECTIVE PITCH CONTROL SCHEDULES

FOR ELIMINATING NONCANCELING HARMONIC ROOT SHEARS -
FLIGHT CONDITION -DNEEA, . = 0.215

62

e a7y g,

e




4000~

ma— N R

S
S
T

NONCANCELING INPLANE SHEAR, 1b

80 180 270 %0
AZIMUTH ANGLE, ¥, deg

Figure 18. COMPARISON OF AZIMUTHAL VARIATIONS OF NONCANCELING
INPLANE ROOT SHEARS - FLIGHT CONDITION DN6GA, ¢ = 0.215

10
COoN L CONTROL
P ONTROL ﬂ n=2,3,8,7

(-1
L]
-
I =
=
f é
' pr
(5]
4 trd

0 90 180 2 260
AZIMUTH ANGLE, ¥/, deg
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FLIGHT CONDITION DNG6A, 4« = 0.215
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APPENDIX 1

AERODYNAMICS OF ROTOR-WAKE SYSTEM
AND REPRESENTATION OF DRAG FORCES

The treatment of the aerodynamics of the rotor-wake system
was basically the same as that used in Reference 2, and an abbreviated
description of the analysis was outlined in Reference |. Minor modi-
fications of the aercdynamic analysis were made in conjunction with
the inclusion of the inplane aerodynamic forces, and a brief description
of the complete aerodynamic analysis is included herein for convenjence.

The shed and trailing vorticity distributions in the wake of each

blade are represented by an arrangement of straight-line vortex fila-
ments as indicated in the sketch below,

? BLADE

TRAILING VORTEX FILAMENTS

-

NED VORTEX FiLANENTS

TIP VORTEX

EXAMPLE OF WAKE CONFIQURATION

For simplicity, the case of only four radial blade segments
is shown on the diagram (i.e., #R= 4), Trailing vortex filaments
arise only at the ends of the blade segments,since it is assumed that
there is no radial variation in tound vorticity along each segment.
Shed vorticity is deposited continuously in the wake behind each blade
of an actual rotor with an intensity equal to the rate of change of
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bound vorticity, However, the numerical solution is carried out
discontinuously using discrete timne or azimuth angle increments.
The discontinuous azimuth angles are denoted by y, with a small
script letter used as a subscript (e.g., ¥4 or ¢ ). The equally
spaced azimuth angles ure given by the formula ¥4 « 2r(d-7)/(¥a)
where # takes on all integer values from one to the total number of
azimuth positions (¥4). The shed vorticity deposited by each blade
segment in a given time increment is lumped into a single shed
vortex filament in the computational model as indicated on the
sketch, This concentrated vortex filament is shed from the trailing
edge at the position corresponding to 70 percent of the time increment,
Results in Reference 2 show that this procedure gives a reasonable
approximation of the shed wake,

The grid of straight-line vortex filaments representing the
shed and trailing vortex filaments can be truncated after a prescribed
number of azimuthal increments., Farther aft, the wake is continued
as a tip trailing vortex filament representing the rolled-up vortex
sheet. Although the computational program permits the use of a
distorted wake, the motions of the end points of each wake segment
were computed using uniform inflow theory.

In carrying out the solution, boundary conditions are satisfied
for M equally spaced azimuth positions of the rotor at the midpoints
of the ## spanwise segments of a given blade. The total bound vor-
ticity or circulation around the airfoil for each of these (#¥2x~v4 = MRA )
blade segment collocation positions is denoted by /” with a lower-case
letter as a subscript (e.g., /7 or /%). The integer subscripts, and &
are used to specify successive blade segment collocation positions
for the entire rotor disc running from the inboard to the outboard
segments at the aft azimuth position and then to the inboard segment
at the next azimuth position, etc,

For a periodic problem, the strength of each trailing or shed
vortex filament can be expressed by a linear combination of the /%
in the rotor disc as a consequence of the vorticity conservation laws,
When the bound vorticity strengths in adjacent blade segments are 7/}
and /;,,, the strength of the trailing vortex segment arising at their
intersection must be /; -/;,, . The strength of the shed vortex fila-
ment immediately aft of a given blade segment is equal to the differ-
ence of the bound vorticities of the blade segment at the preceding
and current azimuth positions. Similar consideraticns can be used
to find the strengths of all the vortex filaments in a wake represen-
tation such as shown in the sketch on page 65.

The strength of the trailing vortex segment produced by the
rolling up of the vorticity deposited in the wake between azimuth
positions ¢,,, and ¢4 is denoted by /4. It is assumed that /% is
equal in magnitude to the largest of the bound vorticities ( /35§ at
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azimuth position ¢4. This amounts to assuming that all the trajling
vorticity deposited in the wake outboard of the radial position of
maximum bound vorticity is concentrated in the tip vortex.

Each segment of the blade at each discrete azimuth position
is represented by a continuous distribution of vorticity aligned in the
radial direction and varying in intensity only in the chordwise direction.
Using the notation of Reference 2 as indicated in the sketch below, the
bound vorticity of a blade segment at collocation position (¢) can be
expressed by the Glauert series,

o o
%0) = 2[4g, ot £ +5 4, 5in n0)s (1)

where

£ = -bcos 8. (32)

REPRESENTATION OF BLADE SECTION OY CHORDWISE DOUND YORTICITY DISTRIDUTION
The condition for no normal flow through the blade chord at
the midspan of a particuiar blade segment can be expressed as follows:

2. ()
vi8) ey -52 [ —,L;—f -0, (33)

where

vis) e (-heViay + Gy 2)y (34)
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and

~NRA
wy () -J.Z, Gy () T . (35)

The symbol »; denotes the velocity relative to the surface of the airfoil
due to plunging motion (4;) and geometric angle of attack (&, ),while «4
is the normal velocity induced by the trailing and shed vortex filaments
in the wake, It is noted that the expression for «jcan be written in
terms of the bound vorticity strengths because the strength of each
wake vortex segment is a function of the /}s. The integral in Equa-
tion (33) gives the induced velccity due to the bound vorticity, An
approximation for this induced velocity is used which should be rea-
sonable at the midspan of the «t* blade segment. It is based on the
assumption that the bound vorticity representing the ;* blade segment
is extended to infinity in both directions. This explains the use of

the two-dimensional Biot-Savart law in the integral term,

It is convenient to replace the chordwise variable £ in Equa-
tions (33), (34), and (35) by the expression defined in Equation (32).
Then, the evaluation of the integral in Equation (33) gives the well-
known result.

Lt r)ds 1 [T Zi(#)sin dap
5 /,

e £-£ T om (cos &-cosd)
= Aak -,,Z/ An‘ cos nb, (36)

where the series in Equation (31) has been substituted for ,,(é4),replacing
6 by ¢. It is also possible to expand « in a cosine series which is written
in the form

MEA o NA 00 -
ur,(a)-;z_j, (”*f £2 Sn, cos né)/; :% (T.J{; ot cosn®) Tp.  (37)

The following set of equations results from substituting Equa-
tions (34), (36), and (37) into Equation (33), and from requiring that the
coefficients of ¢each harmonic cosine term be zero separately:

N

NRA NA
oy = (h+V,a) +ﬁ: Sou, 73 * IZ: Tor, T2
NRA A
Ay ~ (+bay), :}; 5,9/;—42; T, 20 .
NRA A
M2, S TR T et g



A relationship between the /s and 4's is required before a solution
can be found. This is obtained by integrating the Glauert series for
the bound vorticity over the chord,giving the following expression for
the total bound vorticity or circulation about blade segment %,

” .
r, = bk[ 74 (8) 5cn 848

= 2rb, (A, ,) (39)
Since the theoretical circulation and the theoretical lift-curve slope
are not achieved in practice, Equation (39) can be modified as follows:
Ty =ty (y hor A, (40)

where g /"rr is an empirical correction factor applied to the theoretical
lift-curve slope. The result of combining Equations (40) and (38) is

ven A
Lirp oy e T, (41)
vl L=/
where
e = (Qa )k be (-/;*V’a‘s)k 4 ”_(bzd? )k ' (42)
- (Qa)k be (50/4,-) - ”’(5/,5) b » (43)
and
By = (Q ) bx (7?4 ) = (Trk )bk' (44)

Equation (41) represents a set of (¥®4) equations which are solved iter-
atively for the ##4 /s by the Gauss-Seidel method, In each iteration,
the /;'s for the different spanwise blade segments at a given azimuth
angle (#,) must be compared to find their maximurn value /7.

The definition of stall differs slightly from that used in Refer-

ence 2, It is assumed herein that the airfoil is stalled when the effective
angle of attack @, is

- (15
- (Tl

I) > tan &,, , V, >0
k

or
(45)

') > tan(?f—a:M)' V,&< 0
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where a,, @, are arbitrary stall angles of attack for the airfoil section,
For the conditions (45), the circulation /~ is assumed to be

Fe
ly = by 4,“ + (la‘.l C“x bV;)t tan &,
or

2 Ze
/;-77"‘,4" *(Ia'lc“‘xby’>k tan (#—a,,,). (46)

This treatment tends to limit the maximum value of /; attainable at
each blade segment collocation position, and prevents large, unrealistic
values of vorticity from being shed into the wake from sections which
are above their assumed stalling angle of attack. For the conditions
(45), the effective angle of attack &, is

0/ A
a, = tar (lv—ll)k . (47)

Once the set of equations for the /s [i, e., Equation (41)] has
been solved, the strengths of the bound vortices of the blade segments
are known for all collocation positions in the rotor disc. Equation (38)
can be used to compute the remaining coefficients (A4, 4, ) of the Glauert
expansions of the chordwise vorticity distributions at these positions,
The time derivatives of the Glauert coefficients for a given blade seg-
ment are also required in the computations, They are determined by
assuming that all variables change periodically at steady flight con-
ditions. This assumption makes it possible to express the time deriv-
atives of the Glauert coefficients for a given blade segment at a par-
ticular azimuth position in terms of the values of the Glauert coefficients
for the blade segment at all of the /4 equally spaced azimuth positions
which are used in the computations,

The linearized Bernoulli equation for unsteady flow leads to
an expression for the chordwise variation in pressure difference on a
blade segment as it moves through collocation position (¢) in terms of
the Glauert coefficients and time rate of change of the Glauert coeffi-
cients for the blade segment at position (¢). This pressure distribution
is used to compute the lift and pitching moment per unit span as a func-
tion of the values and time derivatives of the Glauert coefficients of a
blade segment at position (¢), Empirical correction factors are also
introduced in these expressions to allow for the fact that the actual
circulation can be less than the theoretical value, Below stall, the
expressions for lift and pitching moment (about the midchord) per unit
span of a blade segment at collocation position (k) can then be written
in the form

a !
A, = {bpy, (clado ¢ #l,) + rblﬂ‘)_{- (340 +4, *-Z—A’)}k g (48)
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1 , 2 1 2 / 3¢ 3 {
mg = {‘z—bﬁyr (Cla Ao *7’4/) +Eﬂ'b/’V/(‘4/*4z) 'Zﬂ'épﬂ (&"ZAI -;Aj)}k' (49)

Above stall, the lift and pitching moment are computed in the manner
described in Reference 2,

The lift and moment loadings obtained from Equations (48) and
(49) are those resulting from the given geometric angles of attack (%% ),
rates of change of geometric angle of attack (%, ), and plunging veloc-
ities (k) entering in Equations (38) and (42). These quantities must be
defined in terms of the geometry and motion of the rotor system,

The shaft-oriented reference system used in the analysis and
the deflected blade axis are indicated schematically in Figures 2 and 3,
respectively, The following expressions for the velocity components
used in the analysis are readily derived by reference to these figures.

V, = ur+(Vpcos a,)siny (50)

= component of relative velocity perpendicular
to the shaft and to the blade axis.

. : ah 4 . dh
i Vpsinag cor (2 1y con o conpun (S22} cox( 2

= component of velocity perpendicular to y, and
the blade axis (i. e., velocity of airfoil relative
to air excluding induced velocity),

By making use of small-angle approximations,

h = Vp sina, + Vg cos a cas;{ziﬁ +/;m. (51)
r

Forward velocity is denoted by V,;, shaft angle by a,,and the distance
of the midchord axis above the reference plane by 4, .

Below stall, the drag loading at the collocation position
in the disc can be written

= (,%, )k Pby (Cdp b= Q“A.f)k ~ L), (52)

where c-‘, is a profile drag coefficient, The profile drag coefficients
are expressed as functions of the geometric angle of attack and Mach
number, and are based on the data contained in Reference 5 for the
NACA 0015 airfoil section used in the UH-1A rotor blades.
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Above stall, the drag is simply

L, - (a, /), . (53)

The expressions used to evaluate rotor torque 4, control
moment #, side force y,and longitudinal force x were based on the i
analysis of Reference 3, For a teetering rotor, under the assump-
é tions that the rotor blade is mass balanced about the elastic axis, -
and excluding the dynamic effects of the control system, the expres- ' .
sions of Reference 3 can be written

R

Q= 2C, (54)

e , . z (Bih,) .
re *ZQ/?;(B"‘HT’EJ = R JZ(AOHJ) 2;"/ (53)
8

h 2
- ')Q - Q') (816) T - (M),
4

- ﬂc Crs -

—(B,g"’) Lo (56)

Y = D’C + ZHZZMCJ (A'/‘{') -
v
'ﬁc {L', *nlzth_ (5,’7./)}
J

' Avh,
X = =Dy -ZQZZ?”(U (84K ) - -(-k—-)lo - Be {lrc"nazmb. (Arh;) } . (57)
J Jgo !

The quantities 8, , ¢y, 2, ,» 0,5 + s ,» 3nd (M,),, are the indicated first
harmonic cosine or sine components of 5,¢, o, £, and Mp, while (, and
Lo are the steady components of € and /, The expressione for 8, ¢, 2,
{,and M, at azimuth position y¢,are:

/. 4 .4
B, - [ (re(r)ar), 0g - [ (dlr)ddr),

4 R
C"z_[(rd(r)dr),e Z,e-‘-[(vl(")d’)l

£
(Mp)e = | (Metridry

where 77 is the aerodynamic pitching moment about the elastic axis,

The first harmonic cosine component of 8, for example, is determined
from the calculated values of 8 at ¥4 equally spaced azimuth positions, i
Denoting

Wls—fr - and Bt-ewaﬁln '

72




(€= 1,2, ©- - NA), By is given by

Bie = —Z Bucos Yy

The steady component of C is

The quantities (4,4 ), (4,4, ), etc.,are given in Equations (7) and (8).
Also,

2;' =/7Ilrf,dr,

[ ) e

f 7/)/,4/ ar,

[ = / ntpdr g
J (4 J -
where ), (4L, /dr)and (47, /dr)are as defined in Appendix II.
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APPENDIX II
BLADE PARAMETERS USED IN COMPUTATIONS

GEOMETRIC PROPERTIES

The blade planform considered in the computations is shown
in the sketch below. The blade was assumed to possess a preconing
angle of 3,0 degrees and a built-in twist (64) varying linearly from
zero at r = 23,0 inches to ~11,9 degrees at the blade tip,

ROTOR SHAFT

w w oW ow W
C - - ®© 6 © ~—e
i - = - - & «~§
AT

E =

UN-1A BLADE PLANFORM

, BLADE PITCH AXIS
ELASTIC AXIS
MIDCHORD AX(S

LSS 115D o EE
e s

ASSUNED LOCATION OF BLADE PITCHING AND ELASTIC AXES

MODES AND FREQUENCIES OF ROTOR BLADE

Uncoupled flapwise and chordwise bending modes and fre-
quencies for the rotating blade were based on the computations using

the associated matrix method of Reference 4. The torsional frequencies
were obtained from a Holzer-type computation, The blade frequencies
were assumed to be identical fqr the three flight conditions analyzed, since
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the rotational speed of the rotor was invariant for these cases, As in
Reference 1, the frequency and mode shape of the third symmetric
bending mode were not computed,and the deflections in this mode were
assumed to be zero in the numerical computations, The rotor blade
frequencies are summarized in the table below.

Table X
MODAL FREQUENCIES OF ROTOR BLADE
ra::::ucv “
MODE red/sec n
@y = 1*T SMETRIC FLAPWISE BENDING 38.8 1.18
«h, = 21 SYMMETRIC FLAPWISE BENDING 2.8 3.48
“ng ° 379 SYMMETRIC FLAPWISE BENDING o -
“g, - 1%t SYMMETRIC TORS1ON 168.8 5. 14
w, - 2" SYMMETRIC TORS|ON 0.9 13.80
oy = 15t SYMMETRIC CHORDWISE BENDING 3.1 1.19
“, - 2" SYMMETRIC CHORDWISE BENDING 286.% 7.19
“hy - 15 ANTISYMNETRIC FLAPWISE BENDING 9.4 2.0
= 2" ANTISYMMETRIC FLAPWISE BENDING 171.6 5.2
“p, - 15t ANTISYMMETRIC TORSION 168.8 5.14
g = 2" ANTISYMMETRIC TORSION 0.9 13,40
@y, = 1% ANTISTMETRIC CHORDWISE BENDING 3.1 1.19
Uy - 2" ANTISYMMETRIC CHORDWISE BEKDING 236.4 7.19

COEFFICIENTS IN EQUATIONS OF MOTION

The coefficients in the equations of motion neglecting the
chordwise deformations of the blade are identical to those in Refer-
ence 1. The assumptions, listed below, which were made in the
computations encompass those of Reference 1, and they were
extended to include the chordwise deformations of the blade.

1. The relatively small gyroscopic coupling terms
were neglected.
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2. The elastic and pitch axes are assumed to be
coincident and to intersect with the chaft axis.

3, The blade is assumed to be mass balanced
about the elastic axis.

4, It is assumed that there is no elastic coupling between:
a. the flapwise bending and torsion modes
b. the chordwise bending and torsion modes

c. the flapwise bending and chordwise bending
modes.

Under these assumptions, the expressions for the mass, centrifugal
force, and stiffness coefficients take the form

&2 dt\ 1%
M), " - [ &‘,,‘, mdr + -T’L)’ ] bR (root #itting) ,

7 / ‘Q'g)' [/’ ] K"’b.-) ‘ .
hhp = [\ 2] U rmdr|dr + Y I, (root titting),

a2 2
Kby = O Thon, twh Mpp

o %
Myy. = ffu. mdr
(] 3

{
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a7, d[
Ma‘a‘ '/ JI‘ dr fa‘ JI‘, ”‘ c

R, dI dI . RidI.  dI
T = —-:- _z - £ - x
“% / dr ~ dr )"'.- @ Tog /(dr dr )0ty dr

f——)f /. dr',

where mis the mass per foot, 47, /dxis the moment of inertia per
foot about the elastic axis due to the horizontal distribution of mass,
and dI,/dxis the moment of inertia per foot about the elastic axis
due to the vertical distribution of mass., The vertical distribution
of mass is neglected in treating the bending modes except for the
contribution of the root fitting,

The numerical values of the nonzero coefficients which were
used in the computations are summarized below,

Table XI
MASS, CENTRIFUGAL FORCE, AND STIFFNESS COEFFICIENTS

FOR TEETERING AND BENDING MODES

- =
. LIS R e ¢
W TLIYL A L SOWE UM LU LA R U u,u,h
MODE 1b-sec2/1t| 1b-sec?/ft | 1b-sec?/tt] 1b/t4
hy - TEETERING 1.972 2.847 - 1972 0
hg = 1t ANTISYMMETRIC FLAPWISE BENDING 1.350 -0.891 -10.610 | 1143.0
hg = 2" ANTISYMNETRIC FLAPWISE BENDING 1.827 0.470 -27.580 | 9236.0
Hy - 15 ANTISYMETRIC CHORDWISE BEWDING|  1.607 2.415 - 0.388 | 2040.0
Hg - 2"0 ANTISYMMETRIC CHOROWISE BENDING|  1.769 -1.495 -12,480 | 85310.0
hy - 15t SYMKETRIC FLAPWISE BENDING 1.653 2,248 - 2,107 §7.5 )
: y - 2"0 SYMMETRIC FLAPWISE BENDING 1,060 -0.780 -10.190 | 2450.0
r Hy = 15t SYMMETRIC CHORDWISE BENDING 1.607 2,416 - 0.388 | 2040.0
; My = 2" SYMMETRIC CHORDWISE BENDING 1.769 -1.496 -12.460 | 85310.0
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Table XII

MASS, CENTRIFIGAL FORCE, AND ST!FFNESS COEFFICIENTS
FOR TORSION AND CONTROL MODES

M T K
6,9, 8, 8 8,6,
1b-ft sec? 1b-ft sec? 1b-ft/rad
8, - 1%t ANTISYMMETRIC TORSION 0.2179 -0.2204 5961 :
O, - 1%t SYMMETRIC TORSION | 0.2179 -0.2294 596) !
O = 2" ANTISYMMETRIC TORSION 0.2466 -1.646 46156
&, - 2" SYMMETRIC TORSION ' 0.2466 -1.646 46156
Mg = 0.20851b-ft-sec’ Toc, = -0.2065 Tb-ft-sec’
¥
M = 0.2065 T = -0.2065
M = «0.1873 T = 0.1378
€4y O4C) :
“ = <01 T = 0.1873
{2} w3 8ycy !
THE STRUCTURAL DAMPING COEFFICIENT 1S ASSUMED TO BE g = 0.03 IN ALL
BENDING AND TORSION MODES. 4

_
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APPENDIX 111
EXPRESSIONS FOR ELEMENTS IN [ E] MATRIX

In estimating the increments in the generalized aerodynamic
forces from one iteration to the next of the computational procedure,
the following expressions are used for the quasi-steady lift and pitching
moment loadings:

% [, e IR P y
a - re 9 3 E
£ erpb[—lz’r(l’,a Why+s VIG)‘Z("N ")} v (58)

m (about midehord) = mpb*{V'a 1,4, - 3 } .+ (59)

where y,, a, @,and /7' are given by Equations (50), (15), (16), and (17),
respectively, The drag, on the other hand, can be written approxi-
mately in terms of a drag coefficient slope as

o« pVbCy a, (60)

where ¢/ is a mean sectional drag coefficient slope assumed, for a
rough estimate, to be independent of » and ¢, CJ‘ can be evaluated
on the basis of finite wing theory as being approximately equal to
the overall lift coefficient £,, written here as W,/pn’/r'ur. The
resultant value of Qa for the flight conditions considered was 0,615,

The incremental generalized forces due to these loadings are
computed by a procedure similar to that used in Reference 7 and can
be expressed in the form

) () (el, 2 (¢)
- - A4d +tnNA, ;0 ¢ +NLA a } : 1
e 6’& ‘-ZIAZ' 5 i %% gi %9 $ (61)
where only terms independent of 4are retained, The symbol a
preceding the symbol for a given quantity is again used to denote the
change in that quantity from the (¢-/)* to the (¢)** approximation of
the iterative solution, -

Only one-half of the modes of the two-bladed teetering rotor ]
need be included in the summation in Equation (61) because the terms
involving the other modes are zero from symmetry considerations; ]
i.e., the only 2. modes to be included in this group are those having
the same symmetry as the ¢ mode,

e
-
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In the case of periodic motion, each variable in Equation (61)
can be expressed in the form of Equation (l) leadmg to the following
equations for the harmonic coefficients of A' 6 :

! ) 2 n) o)
o A,,G".)-‘JZ[(-nA"_z_fAz_’l) (A,,g (nA )A (8, /)},(62)

24.5) ‘,-Z{("Az- )8 ag,) Cry o As) “lag)} 1o

These equations are combined into the following matrix form for con-
venience in the computer solution:

L (6% )] < -[£(1.7,)| [8%tn, 1) - (64)

In this expression, [x/n.7)] is the column matrix which lists the harmonic
cosine and sine coefficients of the root shear and the generalized coor-
dinates representing the blade motions. [ The forms for even and odd »
are given explicitly in Equations (7) and (8)].

The form of the 22-by-22 [E] matrix is indicated below by
writing the expressions for typical terms in the submatrices obtained
by partitioning. In each matrix, the first and ninth columns are zero
because the root shears do not appear in Equations (62) and (63). Also,
the seventh, eighth, fifteenth,and sixteenth rows are zero since the
corresponding equations are constraint equations rather than an expres-
sion of the equilibrium of generalized forces in the control modes.
Moreover, the quasi-steady generalized forces in the vertical and
torsion modes are independent of the generalized coordinates in the
inplane modes. The quasi-steady generalized forces in the inplane
modes are coupled by steady terms only to the torsion and control
modes, as can be seen from Equation (60).

When the transmitted inplane shears are not being suppressed,
the inplane generalized coordinates are essentially calculated after the
generahzed coordinates in the bending, torsion,and control modes.
Thus, it is unnecessary to provide the "H,g elements,and the com-
puter program does not do so. When the transmitted inplane shears
are suppressed, though, the inplane generalized coordinates must be
calculated simultaneously with the others. The 4, 09 elements are
provided then,
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Expressions are given below for the A coefficients in terms
of the blade parameters. These coefficients ar: automatically calcu-
lated in the computer program,

Ao, = ~ma 6%, 4, dr

N 2
Aﬁ‘. 6‘ 7"//‘ ef,,‘, f“ dr
A, A V// b, f, £, dr
Agi, = mp[blety 4, dr
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A,., ¢ A / b'(ce, + ; ) fo‘. "‘,,' dr

A, A" -//Q“ br ﬁ,‘_ f,;. dr

™
¥
)
»

. 7] _b_ b |
; 8. "”/’/"{?:(z*‘)*z}”»‘-’e-"’

>
()
[ ]

<t /b b
;¢ 2”"/0{?; z “’)*?} rth fe dr

b _ S
| Ao, = 2mp [8(3 - Fa )t ty o
]
b
A"'J s =0 61.3(2’4‘3)"’.‘,,“."

} A.‘,a‘, = -er//{;l-’;-c(-zéfca) -(co-e)-zé-}brf,‘,#‘c‘, dr

Ah;:‘ = 0 i

A”'?f =0 c“ br‘f‘,,., f..'. dr §
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C,
AO‘.J b 2”’/0/6 ———fge)’ f' f' dl'

b <
A’.'CJ' = Z”P/b(z-?,f-e) rzf“,/% dr

4;./‘/5. = 0
Aye, = -pC /bf‘f,,. £y dr
¢ -3 A J'

~ 2
Ame, = -/oc"‘“/"' ¥, e dr.
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APPENDIX IV
PROCEDURES USED FOR SOLUTIONS AT FLIGHT CONDITTON DN67A

The procedures for using iteration factors and improved initial
conditions in obtaining solutions can be clarified by examining the manner
in which the va.ious cases at Flight Condition DN67A (i.e., 4« = 0.259)
were treated.

CASE 1 - CONVENTIONAL CONTROL (RUNS E2A TO E2C)

This was the basic case for this flight condition, For initial
conditions, no dynamic blade response was assumed except for an
estimate of the first harmonic flapping. Convergence was achieved in
eight iterations with all iteration factors & and %x equal to 1.0, The
results checked closely with Run B-6 of Reference 1.

CASE 2 - PITCH CONTROL AT SECOND AND FOURTH HARMONICS
)

In this case, the two largest transmitted vertical shears (the
second and fourth harmonics) were eliminated. For initial conditions,
the converged generalized forces and coordinates from Case 1 (Run E2C)
were used., Fourteen iterations in five separate runs were necessary to
achieve convergence, The modes which caused the most difficulty were
the second antisymmetric bending mode and all antisymmetric and sym-
metric torsion modes. & values of 0.5 in these modes led to conver-
gence. The torsional response in the first antisymmetric and symmetric
torsion modes are presented in Figures 10 and 11, respectively, As
compared with the torsional response to conventional control, it can
be seen that the response is much greater here, especially in the sym-
metric mode, Moreover, the angles involved are quite large and rapidly
fluctuating and, thus, have a profound effect on the aerodynamic loading.
This is a principal reason, it is believed, that convergence is so difficult
to attain,

CASE 3 - PITCH CONTROL AT ALL EVEN HARMONICS (RUNS E3A

In this case, all the higher harmonic transmitted vertical
shears (i, e,, the second through the twelfth) were eliminated. Initial
conditions were the converged generalized forces and coordinates from
Case 2 (Run E4E), Fourteen iterations in five separate runs were again
needed, Difficulty was encountered chiefly in the two symmetric torsion
modes, but §, values of 0,75 were adequate,
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CASE 4 - PITCH CONTROL AT THIRD AND SEVENTH HARMONICS
[RUNS E6A TO EGC)

Here, the two largest transmitted inplane shears that can be
suppressed with root pitch control (the third and seventh harmonics)
were eliminated. Initial conditions for the generalized forces and
coordinates were taken again from Case 1 (Run E2C). Nine iterations
were necessary in three runs, There was very little difficulty with
the symmetric modes, but the antisymmetric second bending and both
torsion modes converged slowly. ¢ values of 0.5 and #, values of
0.75 in these modes were used successfully, The resulting first
torsional mode responses are also given in Figures 10 and )1,

From these results, it can be seen that the antisymmetric torsional
response is quite different from the corresponding response to con-
ventional control and is likely to be a source of slow convergence,

CASE 5 - PITCH CONTROL AT ALL ODD HARMONICS (RUNS E7A
TO E7C)

In this case, all the higher harmonic transmitted inplane shears
that can be suppressed with root pitch control (the third through tlevimth)
were eliminated, Case 4 (Run E6C) was used for the initial conditions
on the generalized forces and coordinates. Eleven iterations in three
runs were required, The symmetric modes were rapidly convergent, |
and § and &, values of 0, 75 permitted convergence of the antisymmetric |
second bending and second torsion modes.

CASE 6 - PITCH CONTROL AT SECOND, THIRD, FOURTH,AND

SEVENTH HARMORICS [RUNS EBA TO EBD)

Here, the two largest transmitted vertical shears (the second
and fourth harmonics) and the two largest transmitted inplane shears
that can be suppressed by root pitch control (the third and seventh
harmonics) were eliminated, Initial conditions for the generalized
forces and coordinates were found from Case 2 (Run E4E)., Sixteen
iterations were necessary in four runs, Symmetric and antisymmetric
modes were slowly converging; namely, both torsion modes of the
former and the first and second bending, and both torsion modes of {
the latter, On the basis of indications from Run ES8A, several of the
$, were changed from unity in an attempt to improve the rate of con-
vergence, Using these values and the results of ESA for initial con-
ditions, four additional iterations.were run as” E§B, but they adtually
indicated a slow divergence, The_g{_ were, therefore, reset to unity, i
and the results of EBA were again used for initial conditions. A
successful iteration was thus resumed, with convergence being
attained ultimately using &, values of 0.5 in all modes. The con-
verged torsional response in the first symmetric mode is close in |
phase, if not in magnitude, to Case 2 (see Figure 11). This led, in
part, to the more rapid convergence of this mode than of the first

Coemercs S RS ML SRR
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antisymmetric torsional mode, the response of which is significantly
different in character from Case 2 (see Figure 10). Also, here, both
even and odd harmonics are being controlled and fairly strong inter-

harmonic aerodynamic coupling (of crder) exists between adjacent
harmonics,

At the other flight conditions, the various cases were iterated

in the same general manner with some differences in choice of #, and §, . d
as required, No fixed rules can be given at this time for guaran{eemg 1.,.
in advance the success of a given iteration. The judgment of the user !

must be inserted frequently into the iteration,
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